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      In this work, a quantitative structure-activity relationship (QSAR) for some tacrine derivatives inhibitors of acetylcholinesterase was 
modeled using ligand-receptor interconnection interaction space. The descriptors were obtained by multivariate image analysis (MIA) of 
each molecule. Docking studies were performed to determine the best conformers of inhibitors. In the first step, the best pose of all the 
ligands was selected. Afterward, an MIA-QSAR model using ligand-receptor interconnection data was developed. The pool of descriptors 
was compressed by principal component analysis (PCA). Variable selection was carried out by genetic algorithm (GA) followed by model 
building using the support vector machine (SVM) regression method. The validation of the model's predictive ability was studied by a 
validation set containing 11 individual compounds. The Q2, r2, and ∆rm

2 test prediction values for PCA-GA-SVM model were 0.62, 0.89, 
and 0.145, respectively. After validating the results with all statistical data, three new molecules were designed by the MIA-QSAR model. 
Afterward, new molecules were docked in the AChE active site. Docking studies showed that the amino acids TYR70, TYR121, TYR334, 
TRP279, PHE288, PHE290, TRP84, TRP334, and SER286 are active amino acids in the complex. Finally, the ADMET parameters of the 
new compounds were calculated that were in acceptable ranges.     
 
Keywords: Molecular docking, Multivariate image analysis-QSAR (MIA-QSAR), Ligand-receptor interaction, Acetylcholinesterase 
(AChE), ADMET 

 
INTRODUCTION 
 
      One of the primary tasks of theoretical and 
computational chemistry is the development of existing 
computational methods to improve their utility in molecular 
modeling perspectives [1,2]. Image analysis in chemistry 
involves applying chemometrics methods to obtain 
information from simple images of chemical structure or 
chemical system, for example, images of a group of 
molecules [3,4]. There are many reports on this approach 
that discuss image analysis and its usage in chemistry. 
      Moreover,  image   analysis   is   important    because   it  
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actively provides better quality control in chemical analysis. 
Images are mostly considered as sources of multivariate 
data used as input for various multivariate regression 
methods. In fact, the visual appearance of any particular 
image is less important [5,6].  Quantitative structure-activity 
relationship (QSAR) coupled with multivariate image 
analysis (MIA) was extensively used to predict the bio-
reactivity of the drug-like compounds. The MIA-QSAR 
provides two main advantages: high accuracy, and ease 
ofobtaining molecular descriptors using 2D image analysis. 
In MIA-QSAR, pixels of a bi-dimensional picture of a 
molecule are chosen as raw input data. In this method, 
pixels are called descriptors that may provide useful 
information in chemistry [7]. 
      On   the  other  hand,  descriptors  do  not  have  a  direct 
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physicochemical meaning; they are binaries. According to a 
research, in QSAR, images (2D chemical structure) contain 
chemical information that shows the correlation between 
chemical structures and properties [8]. The basic argument 
here is that the biological properties depend on the 
functional group attached to the main scaffold. this means 
that the prediction ability of biological properties are 
affected by modifying the functional group [9-12]. Previous 
literature showed that employing different colors and sizes 
for different atoms provides more meaningful molecular 
descriptors [13]. These novel ideas improved the 
relationship between the functional group of the scaffold 
and the substance's bioreactivity. Therefore, it led to more 
accurate models in MIA-QSAR [14-16]. 
      In this study, we focused exclusively on the 
acetylcholinesterase (AChE) inhibitors. The biological role 
of AChE is quite important. It mainly causes the quick 
hydrolysis of a neurotransmitter called acetylcholine  (ACh) 
by cutting off the transmission at the cholinergic synapse 
[17,18]. Previously, some new information was reported on 
AChE and its inhibitors. These reports utilized 
computational chemistry to study the structure of the 
enzyme and enzyme-ligand interaction. Also, classical 
kinetic methods, such as QSAR modeling, were employed 
to investigate the site-directed mutagenesis [18-20]. In 
addition, AChE has a great specific activity. The main 
active site of the AChE is down below a narrow catalytic 
gorge. Therefore, this structure limits the products and 
substrate inside and outside of the active site. Historically, 
maybe the most significant feature of cholinesterase has 
been accommodating the physiological substrate cationic 
charge. The enzyme-ligand electrostatic interaction through 
the positive charge of the ligand is important; this implies 
the role of cholinesterase in the binding of the cationic 
substrate and ligands [21,22].  
      Recently, AChEs inhibitors were among the widely used 
treatment for several neuromuscular sicknesses. Also, it 
should be noted that AChEs inhibitors are the first 
generation of medications for Alzheimer's disease (AD). 
AD is a complex neurodegenerative process occurring in the 
central nervous system (CNS) [23,24]. Thus, the design of 
new inhibitors attracted great attention among researchers. 
AD patients should go through using limited types of 
medications, including galantamine, rivastigmine, N- 
methyl-D-aspartate receptor  antagonist,  donepezil,  tacrine, 

 
 
and memantine [23-25]. This paper describes a developed 
MIA-QSAR model using the interactions of the best 
conformer with the AChE active site. Therefore, the 
docking method is used to anticipate whether the compound 
is a promising inhibitor for a particular protein or not. Then, 
the first pose of all ligands was chosen to apply in the MIA-
QSAR method. Finally, principal component analysis 
(PCA) was conducted on the raw molecular images to 
project the input data on another coordinate system with 
fewer dimensions while data preserves its characteristics 
[29]. In order to properly choose the number of PC as input 
for support vector machine regression (SVR), a genetic 
algorithm (GA) was utilized. GA offers an intelligent 
feature selection process, which reduces the number of input 
variables prior to the modeling procedure. 
      Both PCA and GA are known as the methods of data 
reduction. GA can be employed to solve optimization 
problems in a stochastic manner. However, the GA applies 
the Darwin hypothesis evolution on variables to select          
the most important variables. Therefore, GA can be 
successfully used as a variable selection method [30]. Also, 
the modeling was performed by using PC-GA-SVM. The 
PC-GA-SVM was used to model the inhibitory activity of 
three tacrine derivatives. In this study, for the first time, 
images of the ligand-receptor complexes in the binding site 
from docking simulation were used for the MIA-QSAR 
modeling. Afterward, the pixels of aligned 2D images of the 
ligands were used as descriptors for making the QSAR 
model. The genetic algorithm was used to select pixel 
descriptors that are different for the various applied 
molecules. In fact, the constant or invariant parts of pixel 
descriptors are mainly removed by the genetic algorithm in 
the selection phase. In this way, the calibration method is 
very simple, and its statistical parameters are much better 
than the original version. As a result, the model's prediction 
ability in the prediction phase for predicting IC50 values is 
very close to actual values. Based on the obtained results, 
new molecules were designed. The in silico absorption, 
distribution, metabolism, excretion, and toxicity (ADMET) 
studies were done on the new molecules.  
 
MATERIALS AND METHOD  
 
Dataset 
      In this paper, three types of tacrine derivatives as  AChE 
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inhibitors, including Tacrine-4-Oxo-4H-chromene Hybrids, 
heterodimers of tacrine, substituted benzene derivatives, and 
tacrine-xanomeline dimers were extracted from the 
literature (Fig. 1) and used for MIA-QSAR and docking 
studies [31,32].  
      Moreover, inhibitory activity (IC50) value has been 
converted to logarithmic scale pIC50 value, which was 
taken as the dependent variable for the MIA-QSAR study. 
The histogram of pIC50 of 56 compounds of tacrine 
derivatives showed an asymmetric distribution pattern          
(Fig. 2). This resulted in a rational description of data in 
MIA-QSAR modeling. Figure 3 shows the basic structures 
of inhibitors. First, the Kennard-Stone algorithm was 
performed on the data set to split the data into training and 
test set diversely. Then, data series diversity was checked 
using molecular diversity analysis.  

 

Fig. 2. The histogram of logIC50 of 56 compounds of  
                  tacrine derivatives. 

Fig. 1. Structures of the molecules (1-18) tacrine-4-Oxo-4H-chromene hybrids, (19-28 and 43-56) heterodimers of  
               tacrine and substituted benzene derivatives and (29-42) tacrine-xanomeline dimers. 
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Protein and Ligand Preparation 
      The functional groups of the molecular structures were 
drawn colorful in Marvin Sketch (ChemAxon) module and 
then were transferred to Discovery Studio 4 software. Also, 
the docking study was performed on the Ache monomeric 
units where the predestinate ligand was positioned. The 
alkylene-linked tacrine dimers with acetylcholinesterase 
enzyme X-ray crystallographic structure were achieved 
from the protein data bank (2CKM) 2.15 Å resolution [33] 
(http://www.pdb.org). Also, Discovery Studio 4.1 software 
was used to remove water molecules. Both protein and 
ligand files were prepared and saved in PDB format. 
 
Molecular Docking Protocol  
      All structures of inhibitors were transferred into the 
Discovery Studio 4 software workspace. The structures 
were optimized using CHARMm force field [34]. Then, the 
partial charges of inhibitors were calculated by Momany-
Rone [35,36] .The pH value of the protein was set to 7 
andwater molecules were removed. A spherical graphics 
object with the specified center and radius around the active 
site was created. Other parameters were considered based 
on the default protocol settings. Then CDOCKER algorithm 
was used for molecular docking of inhibitors into the 
protein binding site. Afterward, the molecular docking was 
used in a specified space with a radius of 11.88 angstroms 
around the nonbonded ligand in the binding site. The radius 
must have a value to cover the ligand, and the involved 
residues have interactions with the ligand in the binding 
site. After performing CDOCKER  individually  for  each of 

 
these ligands, all the ligands' first pose was chosen. 
Subsequently, screenshots were taken and transferred to a 
workspace in the windows paint program. 
 
Descriptor Calculation with MIA-QSAR Method 
      All calculations were performed using a personal 
computer with the CPU Intel core i7 and 16 GB of RAM on 
the MATLAB software 2016b (MathWorks).  
      The pixels of ligand images that can be 2D or 3D were 
considered as MIA's input descriptors. These pixels were 
used for making QSAR models [37]. 2D images were saved 
as jpg file type and then overlaid as a 2D arrangement by 
taking a pixel on the specific coordinate. Then, each image 
was read in MATLAB software in 277 × 369 pixels window 
size, resulting in a 56 × 277 × 369 three-way dataset.  The 
three-way dataset was extended to a 56 × 102213 matrix 
and the computer memory usage was minimized. Columns 
with a standard deviation of less than 20 were removed to 
generate the final input matrix (X) with 56 rows and 22829 
columns.  
      Before using the SVM method on the dataset, PCA was 
carried out. Then, the PC scores were reduced via the GA 
procedure. Finally, 19 PC scores were chosen for model 
construction. The GA parameters were defined as the 
following: 1% the probability of mutation, 90 crossovers, 
100 runs, and smoothing window size of 3. In addition, the 
preprocessing method (mean centering) was performed on 
the dataset to normalize them before performing SVM 
regression. After constructing the X matrix, in order to 
evaluate the performance of  generated  regression  models,  

Fig. 3. Illustration of MIA-QSAR workflow. 
 



 

 

 

Docking and 2D-structure-activity Relationship/Phys. Chem. Res., Vol. 10, No. 1, 31-44, March 2022. 

 35 

 
 
about 20% of the molecules were selected as a test set using 
the Kennard-Stones algorithm (11 out of 56). Then, the 
SVM regression was used to correlate the X matrix to the 
activities, pIC50 (Y matrix). The modeling procedure, 
including Kennard-Stone, cross-validation, GA variable 
selection, and PCA, SVM, was performed on PLS Toolbox 
Version 6.5 (Eigenvector Research Inc.).    
      The main statistical parameters such as squared 
regression coefficients (r2) for the training and leave one out 
cross-validation (Q2 and LOO-CV) were calculated. Also, 
r2

p and root mean square of external validation (RMSE) 
were calculated for the test set. Moreover, the ∆rm

2 K and 
mean absolute error (MAE) were also obtained. 
 
Variable Selection and Modeling 
      A standard deviation higher than 20 was chosen in the 
preprocessing step. In addition, PCA, as a nonparametric 
method for orthogonal linear transformation, was performed 
on the bi-dimensional image descriptors [38,39]. This 
method projects the data on another coordinate system with 
fewer dimensions while preserving its characteristics [39]. 
The PCs are linear combinations of the original variables 
[40,41]. Each PC is orthogonal to the other [42]. Then, the 
PCs were reduced via the GA procedure. Finally, 19 PCs 
were selected for building the model. After that, the 
Kennard-Stones algorithm was performed on the input 
dataset to separate it into two individual sets, namely the 
training set (45 data) and the validation set (11 data). In the 
next step, the SVM method was employed to build the 
model. 
 
Computational Theory of Support Vector 
Regression 
      SVM was first interduced in 1992 by Vapnik et al. as a 
promising classification and regression method [43]. In 
SVM regression, a nonlinear mapping function is applied to 
move the descriptors into a higher-dimensional space; in the 
next step, linear regression would be performed in the new 
space according to Eq. (1) [44,45]: 
 
      bxQWxfy  )(,)(                                                (1) 

 
where W is calculated using the following equation and b is 
the bias value; 

 
 
      

i

n

i
ii xyW 




1
                                                                  (2) 

 
      

ii e 2                                                                       (3) 

 
      




I

i
i

T

I
cwW

1

1
2
1                                                      (4) 

 
 In Eq. (1), Φ is the kernel function used for nonlinear 
mapping, αi is the Lagrange multiplier, and w is the 
coefficients vector. Thus, the term of <w, Q(x)> defines the 
dot product of w and Ф(x). 
 The minimum value of the  determines the optimal 
regression function [46,47]. The I is the number of training 
compounds, ε is the tolerance zone, and 1/2wTw is 
employed to determine the model complexity. C is the 
regularized constant, which determines the tradeoff between 
the model complexity and the empirical error. If C is a high 
value, it minimizes the empirical error for the training set 
that results in a model with the low generalization ability of 
chemicals in the test set. However, if C is too small, 
inadequate stress will be established on fitting the training 
data. The unknown data set noise determines the optimal 
value of ε. The Lagrange multipliers can provide the 
optimum value for ε, C, and kernel function parameters 
[46]. 
      According to the definition of the error function, SVR is 
separated into two general regression categories. The error 
function can be a multinomial linear function called radial 
basis function (RBF). The RBF is the most commonly used 
function for QSAR modeling. The most general Kernel 
function is RBF which is defined as follows: 
 
      2

),( iji xx
ji exxK 

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where K(xi,xj) is the kernel function, xi is the input dataset, 
and γ is one of the kernel parameters [45].  
 
Diversity Analysis  
      Molecular diversity analysis describes the behavior of 
target molecules to cover a certain structural space and 
triggers various tactics to select an appropriate compound. 
The diversity analysis can be utilized to make sure that both 
training and test sets are descriptive of the whole data set. In  
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diverse spaces, a precise method is performed to place 
molecules properly in a suitable parametrized way. An 
optimum metric space should be chosen for structural 
diversity demonstration, which is a key factor in the model 
efficiency. The Euclidean distance norm dij can be used to 
define a distance score for two individual compounds Xi and 
Xj in a database, including n compound generated from m 
significantly correlated chemical descriptors: 
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where xik and xjk are compound descriptors (Eq. (6)). Also, 
the mean distance from a target sample to the rest of the 
samples was calculated using the following method [48]: 
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The normalized mean distances of chemical values were 
plotted against experimental logKi. These results indicate 
that the training set with a comprehensive illustration of the 
chemistry space was enough to ensure the stability of the 
model and appropriate distribution of the test set in the 
entire dataset. Therefore, the predictive ability of the model 
can be accurately determined (Fig. 4). 
 
In silico ADME Profile Prediction  
      The ADMET properties were determined to predict the 
pharmacokinetic properties for selecting the effective bio 
compounds. This step precedes thesynthesis phase. There        
is a relationship between chemical structures and 
physiological parameters. Therefore, some chemical 
descriptors can be used to calculate pharmacokinetic 
properties. Calculations of important ADMET properties of 
tacrine derivatives including Atom-based logP98 (AlogP), 
2D polar surface area (2D_PSA), plasma protein binding 
(PPB), hepatotoxicity, cytochrome P4502D6 (CYP2D6) 
binding, aqueous solubility, and blood-brain barrier (BBB) 
were performed by ADMET analysis using Discovery 
Studio 4.1 software. 
 
RESULTS AND DISCUSSION  
 
      The SVR results  for  predicting  the  tacrine  derivatives 

 

 
Fig. 4. The result of diversity analysis on AChE inhibitors. 

 
 

 
Fig. 5. Predictive vs. experimental pIC50 values derived  
            from the  SVR Model of the training (●) and test  

               sets .)▲  
 

activities are listed in Table 1 (in Supplementary). It is 
shown that the RBF was used, and the capacity values (C), 
epsilon (ε), and the Kernel parameter (γ) were optimized. 
The optimum values for developing SVM model were 
obtained as ε = 0.01, and γ = 0.001. The model parameters 
including Rc

2, RMSE of calibration (RMSEC), Rp
2, and 

RMSEP were calculated (0.85, 0.25, 0.89, and 0.23, 
respectively). Also, q2 value of 0.62 and RMSECV value of 
0.36 were computed. Moreover, bias2 (0.255), variance 
(0.005), and the mean square error (0.254) for prediction of 
logIC50 were obtained using bootstrap sampling (with 1000 
bootstrap models) in bias-variance estimator software         
(Fig. 5). These results suggest a high predictive capability of 
the model.  
 
Statistical Metrics to Examine the Quality of the 
Dveloped Model  
      After  PCA, 56  scores   were  selected  for  building  the 
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model. Then, model validation was achieved through LOO-
CV and external validation. Golbraikh and Tropsha [49] 
have reported that for a QSAR model, the high value of Q2 
is essential for high predictive ability in a developed model. 
However, this condition is not an adequate reason for a built 
model to show high predictive ability. Thus, one can 
conclude that an internal validation, such as LOO-CV, 
should not be performed solely to define a model's 
predictive ability. Consequently, one should use a rougher 
external validation procedure by utilizing the molecules that 
are not present in the training set. One of the suitable 
external validation methods is the rm

2 metrics which was 
introduced by Roy [50]. The rm

2 determines the proximity 
between the observed and predicted activity. The rm

2  metric 
can be measured for the both training and validation sets 
and includes the predicted training set and/or predicted 
validation set of the equivalent observed data. Currently, 
two various rm

2 metrics can be calculated: rm
2 , and ∆rm

2  
[51,52]. They can be calculated using the following 
equations: 
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Also, the predictive ability of the QSAR model was 
determined by calculating the “with intercept r2” and 
“without intercept (r2

0)” using Eq. (11). 
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The k or k' parameter indicates the slope of regression lines 
through the origin. 
 
      0.85  k  1.15 or 0.85  K'  1.15                            (12) 
 
      It has been suggested that for a model, the value of r2

m 
should be more than 0.5, and the ∆rm

2 value should be lower 
than 0.2. Moreover, RMSE and MAE are the most 
commonly used metrics for errors in QSAR. Here, the 
RMSEC, RMSECV, and RMSEP were used as statistical 
parameters, and also the mean average error (MAE) was 
calculated [52]. The better predictive ability of a model can 
be obtained at the lower MAE value. The following criteria 
indicate the prediction ability of a model: 
 
      MAETest ≤ 0.1 × training set range and MAETest + 3 × ϭ 
≤ 0.2 × training set range                                                  (13) 

Table 1. Experimental and Redicted pIC50 Values for by SVR Model (Test Set) 
 

Compound Experimental 
pIC50 

Predicted 
pIC50 

Residual error  n; m; R; R'                             

M5Test 7.301 7.349 -0.048 n = 8; 6-Cl; 5,7-diOCH3 
M6 Test 8.187 8.03 0.157 n = 8; 6-Cl; 6,7-diOCH3 
M7Test 6.757 7.1046 -0.348 n = 8; 6,8-diCl    
M14Test 7.125 7.377 -0.252 n = 8; 6,8-diCl; 5-OH 
M19 Test 7.583 8.002 -0.419 n = 4 or 5, x = CH2, Y = C, R1 = R4 = H, R2 = R3 = OMe 
M24Test 8.939 8.632 0.307 n = 8, x = CH2, Y = C, R1 = H, R4 = R2 = OMe, R3 = OH 
M26 Test 8.506 8.31 0.196 n = 8, x = CH2, Y = C, R1 = OH, R2 = R3 = R4 = H 
M28 Test 8.016 8.048 -0.032 n = 8, x = C = O, Y = N 
M44 Test 7.722 7.916 -0.194 R1-R2 = OCH2, R3 = OMe, n = 3 
M52 Test 8.312 8.319 -0.007 R1 = R2 = R3 = OMe, n = 7 
M53 Test 8.127 7.951 0.176 R1 = R2 = OMe, R3 = H, n = 4 
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MAE Test is the prediction error among the 95% of test set 
compounds and where the σ value is related to the standard 
deviation of the absolute error values for the validation set. 
The data set and the model should be revised when                 
the following condition applies, indicating the poor 
performance of a model [53,54]:  
 
      MAE > 0.15 × training set range or MAE + 3 × ϭ > 0.25 
× training set range.  
 
The MAE-based standard and other validation metrics were 
measured using an online tool, "BXternalValidationPlus" 
1.2, presented by Roy et al. In addition, this program 
inspects whether a systematic error in the prediction has 
occurred.  
The SVM model showed good predictive ability, and there 
was no detectable and systematic error in the prediction 
(Table S1 in the supplementary information). Finally, the 
calculated  statistical   parameters   of   the   proposed  MIA- 

 

 
QSAR model were: 
 
 rm

2
train = 0.63, ∆rm

2
train = 0.18, rm

2
test = 0.69, ∆rm

2
test = 0.145, 

∆rm
'2

overll = 0.63, ∆rm
2
overll  = 0.19,  r2 - r0

2/r2 
= 0.02, k = 1.006. 
 
Figure 6 shows the LOO-CV results corresponding to the 
SVM algorithm optimization. Each various colors show 
individual γ values representing the error levels. The brown 
and blue regions show higher and lower errors, respectively. 
The optimum conditions were C = 31.62, ε = 0.01, and        
γ = 0.001. 
 
Molecular Design and Docking Studies 
      The SVM model was investigated to predict the 
inhibitory activity of three new tacrine derivatives. To the 
best of our knowledge, there is no report on any biological 
tests on these compounds. Figure 7 shows the molecular 
structures  of   the   new   compounds   that   their  inhibitory 

Table 2. The Validation Parameters of the QSAR Models Estimated by BXternalValidationPlus 1.2 
(https://sites.google.com/site/dtclabxvplus/) 
 
Model biasness test Systematic error result Absent  
  r2Test(95% data) 0.8700  

  r0
2Test(95% data) 0.8622  

Classical metric r0'2Test(95% data) 0.6513  

(after removing Q2
F1(95% data) 0.8714  

5% data with Q2
F2(95% data) 0.8619  

high residuals) r͞m
2(95% data) 0.7428  

  ∆rm
2(95% data) 0.1217  

  CCC(95% data) 0.9193  
  RMSEP(100% data) 0.2268  

Error-based metrics SD(100% data) 0.1142  

(for 100% data) SE(100% data) 0.0344  
  MAE(100% data) 0.1989  
  RMSEP(95% data) 0.2000  

Error-based metric SD(95% data) 0.0960  

(after removing 5% data SE(95% data) 0.0303  

 with high residuals) MAE(95% data) 0.1781  
  MAE+3*SD(95% data) 0.4660  
BASIC DATA STRUCTURE INFORMATION      
RESULT (MAE-based criteria applied on 95% data) Prediction quality GOOD  
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Fig. 6. Optimization of support vector machine parameters;  
             a black star highlighted the optimized point. 
 
 

 
Fig. 7. Structures of the designed molecules. 

 
 
activities were calculated. 
      In order to discover the precise conformation of all 
molecules and validate the main interaction in the enzyme 
active sites, docking simulations were used. The root  means  

 

 
Fig. 8. Schematic docking interaction between compound  

              27 with AChE 
 
 
square deviation (RMSD = 0.82 Å) of co-crystal ligand 
(2CKM), and the re-docked ligand was computed to 
evaluate the validity of the method. The RMSD value of 
0.825 Å indicates great reliability of the method for 
rebuilding the empirical bonding mode for AChE inhibitors. 
It showed that the most active compound is compound 27, 
which was selected to obtain more information about the 
enzyme and inhibitors interactions. The stacked π-π 
interaction of component 27 and tryptophan and tyrosine is 
illustrated in Fig. 8. It is indicated that compound 27 has a 
decent interaction with the active site of the receptor. A 
hydrogen bond is formed between the hydrogen atom of the 
hydroxyl group and the carbonyl part of the asparagine 
group. It can be said that asparagine is among the charge-
free polar R groups. The R groups of the non-polar amino 
acids compared to that of asparagine shows higher water 
solubility and hydrophilicity. The reason for that is their 
ability to form hydrogen bonds with water. The negative 
CDOCKER energy for compound 27 was 42.3 kcal mol-1 
(Fig. 8).  
      The new molecules were computationally docked. The 
correct binding sites for each of the compounds were 
examined. Docking studies showed thatthe amino acids 
TYR70, TYR121,  TYR334,  TRP279,  PHE288,  PHE290,  
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Fig. 9. The best-docked conformer of proposed molecules. 

 
 
TRP84, TRP334, and SER286 are active amino acids in the 
complex (Fig. 9).  
      Tryptophan, which is among hydrophobic amino acids 
that engages in hydrophobic mutual reactions, appeared in 
the molecular docking of all new components. As shown in 
Fig. 7, tryptophan has formed a π-π bond with the benzene 
substitution ring and also the tacrine ring.  Component 2 and 
component 3 demonstrate the stacked π-π bonds of 
tryptophan and tyrosine. Also, in component 2 and 
component 3, a carbon-hydrogen bond has been formed. 
These amino acids have aromatic R groups that are almost 
non-polar (hydrophobic), and they have aromatic side 
chains. All these groups can engage in mutual hydrophobic 
reactions.  In component 3, serine amino acid has formed a 
hydrogen bond as a hydrophilic residue due to its hydroxyl 
groups. The negative CDOCKER energy amounts in these 
new compounds are 33.098, 35.32, and 25.33, respectively. 
According to the docking results, the main interactions 
between inhibitors and the protein's active site are hydrogen 
bonding, stacked π-π, and hydrophobic interactions. 
 
ADMET Studies 
      It is reported that pharmacokinetic studies are one of the 
greatest challenging subjects in rational drug delivery. 
These properties depend on ADMET of selected drugs. The 
pharmacokinetics feature of the chemicals, including 
permeability, molecular  weight,  octanol-water  coefficient, 

 
 

 
Fig. 10. ADMET  Plot   of   the  2-D   polar   surface  area  
             (PSA_2D) vs. ALogP98 for three new molecules. 

 
 
etc., can be determined by ADMET information [55,56]. 
      In order to evaluate the drug-likeness, we studied the 
ADMET properties of new candidate molecules. The results 
are summarized in Table 3. Figure 10 shows acceptable 
values for the structures. According to these results, the new 
ligands are confirmed by drug‐likeness parameters. 
 Moreover, the bipolar of AlogP versus 2D polar surface 
area (PSA) for new molecules is shown in Fig. 10. The 
blood-brain barrier penetration (BBP) was predicted using 
descriptors AlogP98 and 2D_PSA at 95% and 99% 
confidence ellipses. According to the summarized in silico 
ADMET parameters in Table 3 and biplot for studying 
drug-likeness of compounds, it was found that compound 
number 2 is a favorable compound for further assessment of 
in vitro and in vivo biological activity evaluation. 
 
CONCLUSIONS  
 
      In this study, tacrine derivatives as AChE inhibitors 
were designed by using the structure-based MIA-QSAR 
modeling. A set of 56 compounds were used in order to 
construct the model. The 2D images were used as the raw 
input for the model. The ligand-protein interaction was 
studied by performing molecular docking, and the correct 
binding site for these sorts of compounds was examined. 
The docking's first pose images were transferred to the 
windows paint program for being applied in the MIA-
QSAR method. Docking studies for the suggested 
compounds showed that hydrogen bonding and hydrophobic  
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  Table 3. Prediction of ADME Properties of Designed Ligands 
 

Molecular 
formula 

Molecular 
weight 

Solubility BBB CYP2D6 Hepatotoxic PPB AlogP98 PSA_2D 

C22 H25 N3 O5 411.463 -4.117  -6.23902 1.65865 -5.87159 2.388 110.158 
C21 H23 N3 O4 381.436 -3.399 -1.223 -5.82606 1.80017 -6.83591 1.723 101.228 
C21 H22 Cl N3 
O5 

431.881 -4.083  -7.06706 2.08585 -5.29175 2.145 122.044 

 
 
interactions are critical factors in the relationship between 
the inhibitors and the receptor. Docking studies showed that 
these compounds have a good interaction with the active 
receptor site. According to the results, PC-GA-SVM 
modeling coupled with MIA-QSAR showed versatility and 
has a high potential predictive ability which can be used to 
predict the pIC50 values. Furthermore, the in silico 
ADMET studies were performed on the new molecules. As 
a result, the computed values of ADMET descriptors 
showed that all properties are within the expected ranges. 
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