
Regular Article     PHYSICAL 
                                      CHEMISTRY 
                                                                                                                                                                                                               RESEARCH 

                                                                                                                                                                                                                         Published by the 
                                                                                                                                                                                                                 Iranian Chemical Society 
                                                                                                                                                                                         www.physchemres.org 
                                                                                                                                                                                        info@physchemres.org 
 
Phys. Chem. Res., Vol. 7, No. 1, 181-200, March 2019 
DOI: 10.22036/pcr.2018.150936.1545 

 
PVT Properties of Pure Lubricants Using Equations of State and Artificial 

Intelligence 
 

H. Zolfaghari and F. Yousefi* 
Department of Chemistry, Yasouj University, Yasouj, 75914-353, Iran 

 (Received 3 October 2018, Accepted 31 December 2018) 
 
      In this research, the volumetric properties of lubricants are predicted using two statistical mechanical equations of state called Ihm-
Song- Mason and Tao-Mason equations of state at a broad range of temperatures (278.15-398.51 K) and pressures (0.91-600 bar). The 
equations of state have been examined using corresponding state correlation based on just one input parameter (density at room 
temperature) as a scaling constant. In addition, the performance of an artificial neural network (ANN) based on back propagation training 
with 7 neurons in a hidden layer for forecasting the lubricant performance was investigated. The average absolute deviations from literature 
for 1269 data points of pure lubricants using the improved Ihm-Song-Mason equation of state, Tao-Mason equation of state and ANN at 
different conditions are calculated to be 0.75%, 0.25% and 0.17%, respectively.  
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INTRODUCTION 
 
      Lubricants were introduced to decrease the friction 
between surfaces in mutual contacts, reducing the heat 
produced while surface movement. The lubricants may also 
have the role of transmitting forces, transporting foreign 
particles, and cooling or heating the surfaces [1]. 
Additionally, lubricants are used for many other purposes in 
industrial applications. Other uses include cooking, bio-
medical applications on humans, ultrasound test, medical 
tests, and personal lubricant for sexual purposes. 
      Recently, a great amount of effort has been made to the 
extension of procedures for estimating thermophysical 
properties because the direct measurement of the applicable 
thermophysical properties over a wide range of 
temperatures and pressures is unreasonable. The reliable 
knowledge of the volumetric properties of pure compounds 
and mixtures is of enormous importance in many fields of 
research as well as in industrial practice. The densities of 
fluids  as  a  function  of   temperature,  pressure,  and  mole  
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fraction are principally important for the design of industrial 
plants, pipelines, and pumps. This information is needed for 
solving material and energy balances required for the design 
and optimization of chemical processes. Furthermore, 
reliable density data are the origin for the progress of 
correlation models and equations of state (EOS). 
      Equations of state play a central role in modeling 
thermophysical properties of fluids and if the EOS of a 
system is established, all thermodynamic behavior of the 
system can be calculated using the classical thermodynamic 
relations. The theories of liquids have been expanded based 
on perturbation theories.  
      These models have some limitations because of the use 
of many adjustable parameters or mixing rules requiring an 
enough data for justification. Therefore, these limitations 
make them computationally useless. In such cases, an 
artificial neural network (ANN) can be a proper alternative 
to model the different thermodynamic properties. The ANN 
approach is a capable algorithm to approximate certain 
properties such as density [2]. Yousefi et al. used the ANN 
based on back propagation training with 10 neurons in 
hidden  layer  to  predict  the  density of  liquid  alkali  metal  
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alloys in different temperatures and pressures and the 
obtained results had a good agreement with the 
experimental data with absolute average deviations of 
0.22% [3]. Besides, they applied the ANN with 13 neurons 
in hidden layer to predict the density of copolymers and the 
obtained results had a good agreement with the 
experimental data with absolute average deviations of 
0.49% [4]. Zolfaghari et al. [5] used Tao-Mason equation of 
state and the ANN with 19 neurons in hidden layer to 
predict the behavior of binary mixtures of refrigerant 
+lubricant fluids and the AADs% of a collection of 3961 
data points for all binary mixtures using the EOS and the 
ANN at various temperatures and mole fractions are 0.92% 
and 0.34%, respectively.  
      The Tao-Mason equation of state (TM EOS) [6] has 
been successfully applied to fluid and their mixtures [7-9]. 
Moreover, the applications of equation of state and artificial 
neural networks approaches [10,11] were studied to forecast 
the properties of pure polymers. This research concentrates 
on the potential of new version of Ihm-Song-Mason (ISM) 
EOS, TM EOS and ANN to estimate the volumetric 
properties of some lubricants in wide range of temperatures 
and pressures. As a final point, the efficiency of these 
models is evaluated by the experimental data.  
 
THEORY 
 
Equation of State 
      Statistical mechanics provides us the following 
equation, assuming a pair-wise additive central 
intermolecular potential [12], 
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where [P, ρ, g(r)] are the pressure, the density and the pair 
distribution function. Also, (u/r) is the derivative of the 
intermolecular potential (u(r)) with respect to distance (r). 
Ihm et al. [13] derived the following equation, applying the 
Weeks-Chandler-Anderson division for the potential energy 
function [14], 
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where, B2, , G(b) and b are the second virial coefficient, 
the repulsive contribution to the second virial coefficient, 
the average pair distribution function at contact for 
equivalent hard spheres and the analog of the van der Waals 
covolume.  
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Each of the temperature-dependent parameters (B2, α and  b) 
can be written in terms of the intermolecular pair potential 
as [15], 
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where d and u0 are the effective hard-sphere diameter and 
the repulsive branch of intermolecular pair potential.  
Ihm et al. [13] performed a correction in Eq. (2) for the 
attractive forces using the Carnaham-Starling equation for 
G(b) [16], 
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where λ is an adjustable parameter obtained from some 
experimental P-V-T data at high density.  
      Tao and Mason added a perturbation modification term 
which affects the attractive forces to ISM equation of state 
[13] to present an advanced equation of state [17]. The TM 
EOS [17] for pure system is as follows: 
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A1 = 0.143 
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 ,  and  are the Pitzer acentric factor, adjustable 
parameter and the number density, respectively. TC, B2,  
and b are the critical temperature, the second virial 
coefficient, the scaling parameter and the effective van der 
Waals co-volume, respectively. 
      The second virial coefficient, B2, along with the 
parameters α, and b are required to use TM EOS. It should 
be stated that if the intermolecular potential is not available, 
the knowledge of experimental second virial coefficient data 
is sufficient to calculate values of α and b parameters [6]. In 
this case, there are several correlations to calculate the 
second virial coefficient. 
The Tsonopolous correlation to calculate the B2 values is 
presented as follows [18]:  
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where Tr is reduced temperature. 
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To achieve the higher accuracy, a corresponding state 
correlation was investigated to make ISM and TM EOS 
applicable in pure lubricants. In this respect, the following 
correlation equation for B2 using new scaling parameter 
(molar density at the room temperature) has been 
developed,   
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where ρr is molar density at room temperature.  
      The empirical equations given in Ref. [6] for α/υB and 
b/υB as a function of T/TB can be rescaled by Tr (298.15) and 
ρr (room temperature and density) instead of TB and υB as 
pointed out by Eslami [19], 
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where Tm = T/298.15, and the constants a1, a2, c1, c2 are       
-0.0860, 2.3988, 0.5624, 1.4267, respectively. All equations 
are coded in MATLAB software. 
 
Artificial Neural Network (ANN) Modeling 
      An ANN is a non-linear mathematical method which is 
notable because of its simplicity, flexibility, and 
accessibility [20-22]. The ANN is obtained based on the 
activity of human brain and has been applied to many 
scientific models [21-24]. Various applications and details 
of the ANN were presented in prior publications [25,26]. 
      An ANN is formed by the input layer, the output layer, 
and one or more neuron layers (named hidden layers), 
which can be laid between them (Fig. 1). Figure 1 shows the 
schematic presentation of the ANN model. The construction 
of the ANN is identified using the number of network 
layers, the number of neurons in each layer, the nature of 
learning algorithms and the neuron transfer functions.  
 
Network Training and Choice of the Top Topology 
of Network 
      One kind of feed forward neural network that has been 
used commonly for the approximate function is multilayer 
percepetron (MLP). They adjust weights of the neurons with 
the difference between the values of actual and target 
output. This technique offers a non-linear regression 
between input and output variables and is very expensive in  
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identifying patterns in complex data. The back-propagation 
algorithm is one of the most important training algorithms. 
Two common transfer functions that are used in the hidden 
layer and output layer are “Tansig” and “Purelin”. 
Furthermore, the best network organization is explained via 
the back propagation algorithm of Levenberg–Marquardt 
(trainlm).  
      The mathematical definition of the errors criteria 
including mean square error (MSE), absolute average 
deviation percentage (AAD%) and coefficient of 
determination (R2) were defined as bellow: 
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where N, cal

ii and  exp  are number of data, experimental and 

calculated density, respectively. 
      The neural network programming was provided in ANN 
tool box of MATLAB  software. 
 
RESULTS AND DISCUSSION 
 
      In this study, the PVT properties of lubricant               
are obtained from the extended SM and TM EOS. 
Subsequently,  the artificial  intelligence model  was  trained 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
over the complete range of temperatures and pressures. The 
experimental data were taken from ref. [27-38] and all of 
them are used for modeling and comparison.  
      Some changes are applied to extend the original ISM 
and TM EOS as follows: 1) the second virial coefficient was 
improved using the density at room temperature (that 
simply can be calculated against the critical parameters). 2) 
The number of input parameters in the Tsonopolous’ 
correlation [18] is reduced to just one parameter (ρr) by the 
Eslami correlation [19]. 3) k in Eq. (10) is a weak function 
of the acentric factor so that k  is estimated to be 1.093 and 
A2 was changed to 1.64.4) α and b were formulated using 
Eqs. (15) and (16), respectively. In both equations, the input 
parameters (the molar density at room temperature) are 
more available than the Boyle temperature and volume. 
Overall, the number of input parameters is reduced from 
five (critical temperature, critical pressure, acentric factor, 
Boyle temperature, and Boyle volume) to just one (molar 
density at room temperature).  
In this work, λ for pure lubricants was adjusted by a 
nonlinear regression technique as follow: 
 
      2 2a bT cP dT eP fTP       +dT3                  (20)   

                                             
The abbreviation and physical properties of all pure 
lubricants are present in Table 1 and the required parameters 
to calculate of λ for pure lubricants are listed in Table 2.  
      In this project, to predict the PVT properties of 
lubricants, the temperature (T), pressure (P), molecular 
weight and normal boiling temperature of pure lubricant  are 
 

 

Fig. 1. The MLP structure. 
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      Table 1. Abbreviation and Physical Properties of Pure Lubricant 
 

Tb  

(K) 

ρr 

(Kg m-3) 

MW  

(g mol-1) 

Abbreviation Full name of lubricant 

548.15 1009 222.28 TEGDME Tetraethylene glycol dimethyl ether 

489.15 986 178.23 DMC Dimethyl carbonate 

752.45 1070 416.51 TriEGDME Triethylene glycol dimethyl ether 

801.45 1038 472.62 PEC4 Pentaerythritol ester of butyric acid 

847.55 1014 528.73 PEC5 Pentaerythritol tetrapentanoate 

891.15 995 584.82 PEC6 Pentaerythritol ester of hexanoic acid 

932.65 981 640.94 PEC7 Pentaerythritol tetraheptanoate 

972.25 969 697.04 PEC8 Pentaerythritol ester of octanoic acid 

920.85 978 640.94 PEC9 Pentaerythritol tetranonanoate 

363.15 1073 90.08 PEB8 Pentaerythritol tetra(2-ethylhexanoate) 

743.45 804.9 422.81 Squalane 2,6,10,15,19,23-Hexamethyltetracosane 

475.15 999 134.17 DEGEE Diethylene glycol monoethyl ether 
 
 
     Table 2. Coefficients in Eq. (21) 
 

F × 10-7 e d × 10-7 c b a Lubricant 

8.148 -7.2260 × 10-8 -6.076 -0.00017 7.5871 × 10-5 0.4767 TEGDME 

7.179 -5.4012 × 10-8 -5.768 -0.00016 6.5868 × 10-5 0.4784 TriEGDME 

15.05 -2.042510-7 -5.456 -0.00029 -4.058010-6 0.5038 PEC4 

13.867 -2.068 × 10-7 -4.758 -0.00024 -2.7479 × 10-5 0.5028 PEC5 

17.52 -3.0462 × 10-7 -4.401 -0.00031 -5.7283 × 10-5 0.5098 PEC6 

15.013 -2.709 × 10-7 -3.879 -0.00023 -6.1586 × 10-5 0.5034 PEC7 

18.87 -3.8952 × 10-7 -3.909 -0.00030 -7.0716 × 10-5 0.5099 PEC8 

15.980 -3.484 × 10-7 -2.660 -0.00022 -0.00012 0.5102 PEC9 

15.45 -3.5756 × 10-7 -2.843 -0.00022 -0.0001 0.5167 PEB8 

3.463 -8.3954 × 10-9 -10.54 -0.00010 0.0005 0.4055 DMC 

12.50 -2.2522 × 10-7 -3.493 -0.00018 -5.8360 × 10-5 0.4917 Squalane 

8.059 -4.6055 × 10-8 -10.10 -0.00020 0.0003 0.4584 DEGEE 
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used as input variables and the molar densities of lubricants 
are used as targets. The ranges of input-output variables for 
each system are given in Table 3. In this table, the number 
of data points are defined as NP. The experimental data for 
each lubricant are taken from ref. column.  
      All experimental data points that used in this study is 
1269. The MLP is trained, validated, and tested with a 
random 70% (889 data points), 15% (190 data points), and 
15% (190 data points), respectively. 
      One of the important problems in the ANN is over-
training. It can be overcome through proper choice of the 
number of neurons in the hidden layer (Fig. 2). Training 
step should increase with increasing hidden neuron number, 
and an optimal number of hidden neurons leads to the best 
performance of the network in testing data phase. This 
trained network yields the best prediction on testing data 
and the use of more or less than the optimal number of 
hidden neurons was discouraged. The mean square error 
(MSE), average absolute deviation (AAD%) and correlation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
coefficient (R2) of training and testing data were selected as 
a measure of the performance of the net. As a result, the 
network with one hidden layer (7 neurons) with grateful 
values of MSE, AAD and R2 of training and testing data 
(Table 4), produced the best prediction. Figure 3 shows the 
training, validation, and test deviations as a function of the 
number of training epochs (based on early stopping 
approach). The training stopped when the network 
converged. In this situation, the mean squared error is 
relatively constant over 37 iterations. It should be stated 
that, the neural network with the randomly assigned initial 
weights and biases cannot accurately estimate the required 
output. Therefore, the weights and biases are modified by 
the training to minimize the difference between the model 
output and target (observed) values (Table 5). Table 5 
presents all optimal calculated weights and biases of trained 
network.  
      The best neural network model was utilized to predict 
the   PVT  properties  of   lubricants  based  on  training  and 

         Table 3. Summary of the Input-output Dataset Characterization 
 

Ref.  Δ 

(g cm-3) 

Tb 

(K) 

ΔP 

(bar) 

ΔT 

(K) 

NP Lubricant 

[29,30] 0.9375-1.0515 548.15 1-600 278.15-373.15 204 TEGDME 

[31] 0.9086 -1.0275 489.15 1-600 278.15-373.15 204 TriEGDME 

[32] 1.008-1.0782 752.45 1.04-348.48 283.15-343.15 40 PEC4 

[33] 0.9744-1.0586 801.45 1-450 278.15-353.15 99 PEC5 

[32] 0.9573-1.0222 847.55 0.91-344.34 283.15-343.15 40 PEC6 

[34] 0.9391 -1.0186 891.15 1-450 278.15-353.15 99 PEC7 

[32] 0.9262-0.9885 932.65 1.05-344.74 283.15-343.15 40 PEC8 

[34] 0.9176 -0.9903 972.25 1-450 283.15-353.15 88 PEC9 

[35] 0.9195-0.9955 920.85 1-450 278.15-353.15 99 PEB8 

[36,37] 0.9883-1.1132 363.15 1-400 278.15-353.15 141 DMC 

[38,39] 0.7421-0.8399 743.45 1-600 278.15-398.15 143 Squalane 

[40] 0.9341-1.0113 475.15 1-250 283.15-353.15 72 DEGEE 
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testing data. The comparison of the predicted and 
experimental values of training and testing data are shown 
in Figs. 4a and 4b. These figures demonstrate that there is 
good harmony between the predicted and the experimental 
values of training and testing data of lubricants with average 
absolute  deviations  of   0.0154%  and  0.0156%  and  high 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
correlation coefficients, 1.0000 and 1.0000, respectively. In 
addition, the error analysis of training, testing and validation 
data by temperature variation are presented in Fig. 5. This 
figure illustrates that the minimum, maximum, and mean 
standard deviations for predicting the neural network are 
0.0003, 0.5863 and 0.1700, respectively. 

 
Fig. 2. Effect of the number of hidden layer neurons on AAD%. 

 

 

Fig. 3. Evolution of training, validation, and test errors as a function of the number of training epochs during 
               ANN training. 
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      The densities of lubricants based on the TM EOS under 
various conditions were computed and compared with 
experimental data [27-38]. 
      Finally, the ANN, ISM and TM EOS were evaluated 
with literature values [27-38] for all lubricants. The TM 
EOS and ANN have good harmony with experimental data. 
Therefore, all figures present the AAD% plot of two 
excellent models with experiment. 
      The  computed  molar  densities  of   DEGEE  from  TM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EOS and ANN at different temperatures and pressures are 
compared with experimental data [38] and the deviation plot 
of this system versus pressure at different temperatures is 
shown in Fig. 6. This figure presents a good agreement 
between the TM EOS and ANN with the literature with the 
overall average absolute deviations of 0.034 and 0.075 from 
the literature data, respectively. 
      The average absolute deviations from experimental data 
[34,35]  for  the  predicted  molar  densities  of  the dimethyl  

      Table 4. The Results of AAD%, MSE and R2 to Optimize the Number of Neuron in Hidden Layer 
 

Testing Training  

R2 MSE AAD% R2 MSE AAD% Net 

0.59814 2.66E-03 3.6667 0.55798 3.54E-03 4.5270 1 

0.95419 4.11E-04 1.6440 0.95318 4.74E-04 1.8119 2 

0.99934 6.75E-06 0.1924 0.99925 7.37E-06 0.2091 3 

0.99971 2.40E-06 0.1215 0.99974 2.77E-06 0.1298 4 

0.99980 2.39E-06 0.0771 0.99978 2.21E-06 0.0757 5 

0.99999 1.42E-07 0.0307 0.99998 1.55E-07 0.0320 6 

1.00000 4.60E-08 0.0156 1.00000 4.41E-08 0.0154 7 

1.00000 3.50E-08 0.0143 1.00000 3.47E-08 0.0145 8 

1.00000 2.49E-08 0.0124 1.00000 2.83E-08 0.0130 9 

1.00000 2.31E-08 0.0120 1.00000 2.47E-08 0.0121 10 

1.00000 1.95E-08 0.0106 1.00000 2.26E-08 0.0115 11 

1.00000 1.70E-08 0.0103 1.00000 2.27E-08 0.0112 12 

1.00000 1.64E-08 0.0101 1.00000 2.15E-08 0.0112 13 

1.00000 1.45E-08 0.0094 1.00000 1.92E-08 0.0105 14 

1.00000 1.33E-08 0.0092 1.00000 1.90E-08 0.0099 15 

1.00000 1.61E-08 0.0095 1.00000 1.68E-08 0.0093 16 

1.00000 1.76E-08 0.0094 1.00000 1.83E-08 0.0096 17 

1.00000 1.17E-08 0.0085 1.00000 1.64E-08 0.0094 18 

1.00000 1.26E-08 0.0082 1.00000 1.44E-08 0.0086 19 

1.00000 1.75E-08 0.0088 1.00000 1.54E-08 0.0085 20 
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Carbonate are calculated from the improved TM EOS and 
ANN and the overall AAD% are 0.03% and 0.12%, 
respectively (see Fig. 7). The improved TM EOS is better 
than the artificial intelligent. 
      The TM EOS and the ANN were performed to calculate 
the densities of PEB8 and plot the deviation of this system 
from experiment [33] versus pressure at various 
temperatures as presented in Fig. 8. The overall AAD% of 
TM EOS and ANN are 0.76% and 0.11%, respectively. The 
ANN is superior to the new equation of state. 
      Densities of PEC4 calculated from the new TM equation 
of state and ANN at various temperatures and pressures and 
AAD% plot of this lubricant from experimental data [30] 
are presented in Fig. 9. The overall AAD% of TM EOS and 
ANN are 0.14% and 0.04%, respectively. The ANN is 
superior to the new equation of state. 
      The average absolute deviations from experimental data 
[31] for the predicted densities of the PEC5 are calculated 
from EOS and ANN, and the deviation plot via pressure at 
different temperatures is shown in Fig. 10. The AAD% of 
TM EOS and ANN are 0.27% and 0.07%, respectively. 
      The  calculated  molar  densities  of   PEC6   in   various 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
temperatures and pressures are performed and the AAD% 
from experimental data [30] is presented in Fig. 11. This 
figure shows that the AAD% of TM EOS and ANN for 40 
data points are 0.196% and 0.104%, respectively. 
      The calculated molar densities of PEC7 in temperature 
range of 278.15-353.15 K and pressure range of 1-450 bar 
are performed and the AAD% from experimental data [32] 
is presented in Fig. 12. The AAD% of TM EOS and ANN 
for 99 data points are 0.350% and 0.099%, respectively. 
      The average absolute deviations from experimental data 
[30] for the predicted densities of the PEC8 in temperature 
range of 283.15-343.15 K and pressure range of 1.05-
344.74 bar are calculated from TM EOS and ANN and the 
deviation plot via pressure at different temperatures is 
shown in Fig. 13. The AAD% of TM EOS and ANN for 40 
data points are 0.261% and 0.916%, respectively. 
      Densities of PEC9 calculated from the new TM equation 
of state and ANN at various temperatures and pressures and 
AAD% plot of this lubricant from experimental data [32] is 
presented in Fig. 14. The overall AAD% of TM EOS and 
ANN for 88 data points are 0.421% and 0.185%, 
respectively.  The  ANN  is  superior to the new  equation of 

Table 5. The Optimal Weights and Biases for Hidden and Output Layers of ANN 
 

Hidden layer connectivity 

                                           Wij      Bi 

-0.07321 -0.29988 0.14014 -1.64004 1.62087  -0.07321 

3.56231 0.14145 -0.03541 -0.79087 3.95784  3.56231 

0.43081 -0.10014 0.01125 -5.11718 -1.57500  0.43081 

0.58875 1.14282 1.33406 -0.96857 -1.162046  0.58875 

1.89764 -0.09617 0.00930 0.09048 -8.44102  1.89764 

1.40587 1.14769 0.06322 -0.54521 2.54325  1.40587 

-2.38583 -0.07287 -0.04041 -2.48346 -1.17697  -2.38583 

Output layer connectivity   

Wji bi 

0.74626 -1.24307 4.41939 -0.00640 -4.35258 -0.072021 -0.28749 1.25419 
i: representative of neuron; j: representative of corresponding inputs. 
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state. 
      The calculated molar densities of Squalance, TEGDME 
and Tri EDME, in various temperatures and pressures are 
performed and the AAD% from experimental data [27-
29,36,37] are presented in Figs. 15-17. These figures show 
that the ANN is better than the new version of TM EOS but 
both of methods have good agreement with experimental 
data. It should be stated that although the error of obtained 
result from artificial neural network with the literature is 
smaller than that from EOS but the equation of state  based  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
on the statistical mechanics is very important in 
thermodynamic science. Because of all behavior of 
molecules (such as interaction of molecules) are defined in 
equation of state based on statistical mechanics while the 
artificial neural network is a black box. 
      Furthermore, in this work, ISM EOS is extended by the 
above mentioned corrections and the results are compared 
with those obtained using TM EOS and ANN. The AAD% 
of the calculated molar densities of pure lubricants using  
the  improved  ISM EOS,  TM EOS  and  ANN  at  different  

 

 

Fig. 4. Modeling ability of the optimized ANN to predict the densities of all pure lubricants (a) for training data  
             (b) for testing data. 
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Fig. 5. Mean absolute relative error for the train, test and validation density of all pure lubricants with the  
                experimental data. 
 

 

 

Fig. 6. The deviation plot of the calculated density vs. pressure for DEGEF in different temperatures, using TM  
            EOS and ANN from the literature data [40]. 
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Fig. 7. The deviation plot of the calculated density vs. pressure for Dimethyl Carbonate in different temperatures,  
            using TM EOS and ANN from the literature data [36,37]. 
 
 

 

Fig. 8. The deviation plot of the calculated density vs. pressure for PEB8 in different temperatures, using TM  
               EOS and ANN from the literature data [35]. 
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Fig. 9. The deviation plot of the calculated density vs. pressure for PEC4 in different temperatures using TM  
              EOS and ANN from the literature data [32]. 
 
 

 

Fig. 10. The deviation plot of the calculated density vs. pressure for PEC5 in different temperatures, using TM  
               EOS and ANN from the literature data [33]. 
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Fig. 11. The deviation plot of the calculated density vs. pressure for PEC6 in different temperatures, using TM  
                  EOS and ANN from the literature data [32]. 

 

 

Fig. 12. The deviation plot of the calculated density vs. pressure for PEC7 in different temperatures, using TM  
                 EOS and ANN from the literature data [33]. 
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Fig. 13. The deviation plot of the calculated density vs. pressure for PEC8 in different temperatures, using TM EOS 
                    and ANN from the literature data [32]. 

 
 

Fig. 14. The deviation plot of the calculated density vs. pressure for PEC9 in different temperatures, using TM EOS  
                    and ANN from the literature data [33]. 
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Fig. 15. The deviation plot of the calculated density vs. pressure for Squalance in different temperatures, using TM 
              EOS and ANN from the literature data [38,39]. 
 

 

Fig. 16. The deviation plot of the calculated density vs. pressure for TEGDME in different temperatures, using 
                 TM EOS and ANN from the literature data [29,30]. 
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temperatures and pressures are collected in Table 6. 
Besides, this table includes the number of data point (NP), 
pressure, and temperature ranges of all studied pure 
lubricants. The overall average absolute deviation of ISM 
EOS, TM EOS and ANN for 1269 data points are 0.75%, 
0.25% and 0.17%, respectively.  
 
*NP is Nnumber of Data Points 
      Generally, the other important characteristic of the ISM 
and TM EOS are predicting of PVT properties of pure 
lubricants with minimum available input information; there 
is no need to specify the potential energy curve, the 
experimental second virial coefficients, the critical constant, 
or some parameters like the Pitzer acentric factor and the 
heat of vaporization. 
 
CONCLUSIONS 
 
      The ISM and TM EOS based on statistical mechanics 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
and artificial neural networks models are developed to 
predict the volumetric properties of pure lubricants at 
different temperatures and pressures. The temperature-
dependent parameters of the equation of state have been 
calculated using corresponding state correlations, based on 
density at room temperature as scaling constants. It is 
shown that the knowledge of just liquid density at room 
temperature is sufficient to estimate the PVT properties of 
pure lubricants in different conditions. Therefore, there is no 
need to specify the potential energy curve, the experimental 
second virial coefficients, the critical constant, or some 
parameters like the Pitzer acentric factor and the heat of 
vaporization. 
      Also, the performance of the artificial neural network 
based on back propagation training for forecasting of the 
behavior of pure lubricants was investigated. The number of 
experimental data points set of density that are used in this 
study is 1269. The MLP is trained, validated, and tested 
with  a  random  70%  (889  data   points),   15%  (190  data 

 

Fig. 17. The deviation plot of the calculated density vs. pressure for Tri EDME in different temperatures, using TM  
                   EOS and ANN from the literature data [31]. 
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points), and 15% (190 data points), respectively. Besides, 
“Tansig” and “Purelin” transfer functions are used in the 
hidden layer and output layer. Furthermore, the best 
network organization is explained via the back propagation 
algorithm of Levenberg-Marquardt (trainlm). 
      As stated, one of the important problems in the ANN is 
over-training. It can be overcome through appropriate 
selection of the number of neurons in the hidden layer. 
Training step should increase with increasing hidden neuron 
number; and an optimal number of hidden neurons lead to 
the best performance of the network in testing data phase. 
This trained network yields the best prediction on testing 
data and the use of more or less than the optimal number of 
hidden neurons was discouraged. The mean square error 
(MSE), average absolute deviation (AAD%) and correlation 
coefficient (R2) of training and testing data were selected as 
a measure of the net performance. As a result,  the  network  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
with one hidden layer (7 neurons) with grateful values of 
MSE, AAD and R2 of training and testing data presented the 
best prediction.  
      Finally, the average absolute deviations of the calculated 
molar densities of pure lubricants using the improved Ihm-
Song-Mason equation of state (ISM EOS), Tao-Mason 
equation of state (TM EOS) and artificial neural network 
(ANN) at different temperatures and pressures were 
calculated; the overall average absolute deviation from the 
literature for 1269 data points were 0.75%, 0.25% and 
0.17%, respectively (see Fig. 7). 
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