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 In this article, the crystallization of polyethylene is investigated by the modified weighted density approximation. Also, a direct 
correlation function of polyethylene based on the RISM theory is used. The free energy of a polyethylene is calculated using the density 
functional theory. The crystallization and also the solid and liquid densities of polyethylene are calculated and compared with the PRISM 
simulations and experimental results. It is shown that the results obtained by modified weighted density approximation (MWDA) are in a 
better agreement with the experimental results rather than the PRISM simulations. 
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INTRODUCTION  
 
 A polymer is a large molecule that is made by linking 
the repeating units. The crystallization ability of polymers 
has a very important industrial application [1]. Most of the 
factors affecting the crystallization rate of polymers are 
polymer chain structure, molecular weight, the ability to 
form a secondary valence band and the thermal history of 
the polymer during construction. It is difficult to take into 
account all of the above factors in calculations and it will 
increase the number and variety of studying methods. Under 
certain conditions, most of the polymers will be crystallized 
into FCC lattice and acquire special properties. Many efforts 
have been taken to explain this phenomenon [2]. Structural 
properties and phase transition are the most important 
properties in the study of crystallization in polymers. 
 Many analytical methods have been developed to 
describe the structural properties and phase transition of 
many-body particle systems: Flory lattice [3-5], growth 
theories [6,7], Monte Carlo simulation [8-10], Landau-de 
Gennes theory [11] and density functional theory [12-16]. 
The density functional theory in  the  form  of  classical [12]  
 
*Corresponding author. E-mail: razeghizadeh@yahoo.com 

 
and quantum [13] is used to study different thermodynamic 
properties of simple liquid. 
 This theory is used to study homogeneous [14-16] and 
inhomogeneous systems such as limited liquid, liquid-solid 
interface [17,18], crystals [19-21], electron cloud 
distribution in atoms [22], phonon dispersions of cluster 
crystals [23], calculations of the electronic structure in 
atoms [24], the electronic structure of solids [25], and phase 
transition [26]. The basic assumption to study the phase 
transition in all of density functional theories is that the 
thermodynamic potential of a non-uniform system is 
approximated to its equivalent uniform system. The details 
of approximations used in relations distinguish each theory 
of the others. Therefore, different approaches have been 
used earlier. The approximations proposed by Rama 
Krishnan and Yussouff (RY) could be an example for these 
approximations [27].  
 This approximation is a suitable method to study 
freezing transition on simple and mixed liquid [28,29]. 
Another approximation in this field is a weighted density 
approximation (WDA) [30-34]. This approximation will 
lead to a better result compared to RY approximation [35-
38]. Unfortunately, long and complicated calculations of 
this method made it  very difficult. Therefore,  we presented  



 

 

 

Razeghizadeh & Rafee/Phys. Chem. Res., Vol. 4, No. 2, 209-219, June 2016. 

 210 

 
 
modified weighted density approximation (MWDA) [39,40] 
because this method will lead to better results and, since this 
method uses classical approximation, calculations in this 
method are more simple [41]. Some efforts were made in 
using density functional theory to explain polymers that a 
few of them can be mentioned. 
 Yethiraj and Woodward presented a density functional 
for polymer based on WDA theory [42]. A few years later, 
Yethiraj corrected his own theory by using complex 
weighted functional [43]. He studied two models in his 
article: A freely jointed hard chain model and a fused-sphere 
hard chain model. He used correlation function obtained 
from the polymer reference interaction site model (PRISM) 
and Ornstein-Zernike equations for polymer to start his 
calculation. Different studies have been conducted on 
polymers, especially polyethylene, with density functional 
method [44,45]. As an example, McCoy et al. studied 
polymer system by density functional [46]. One of the 
models of density functional theory is simple liquid model. 
This article indicates that simple liquid model can be used 
for polymers. 
 In this paper, at first, we calculate the correlation 
function of polyethylene (N = 6429) by curve fitting of 
experimental correlation function in [46]. Then, we 
calculate different parameters of polyethylene such as solid 
and liquid phase densities, Lindemann criterion, chemical 
potential, monomer diameter and isothermal compressibility 
of the liquid phase of polyethylene. After that, we compare 
our results with experimental ones and the results of 
different methods. Finally, we show that our results of 
MWDA method have a better agreement with experimental 
results in comparison with more complex methods such as 
Monte Carlo simulation or WDA, etc. Therefore, for the 
first time, we show that different parameters of polyethylene 
by MWDA method can simply calculated by using 
correlation function. 
 
THEORETICAL FORMALISM 
 
Weighted Density Functional Formalism 
 The basis of density functional theory is determining a 
grand free energy [] as an individual function of single-
particle density )(r . The goal of this part is to investigate 

thermodynamic    properties    of    homogeneous    systems. 

 
 
At  first, the grand free energy [] is obtained as [43]: 
 
   ])()[()]([][  rVrrdrF ext

                             (1) 

 
where μ is chemical potential, )(rVext

 is the external 
potential and )]([ rF 

  is single particle Helmholtz free 

energy functions of classical many-body system. The 
equilibrium density of the system is calculated by 
minimizing [] with respect to )(r  in DFT method. The 

macroscopic properties of the system are calculated in an 
equilibrium state [43]. 
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The equilibrium Helmholtz free energy of the system can be 
calculated as [12]:  
 

  tdrVrFF ext

 )()(][][ int 000                                     (3) 

 
where Fint[0] is intrinsic Helmholtz free energy of the 
system. Therefore, from Eq. (2) we have [12]: 
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Where μint is the intrinsic chemical potential and it is 
calculated as [12]: 
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Also the Helmholtz free energy of a classical many-body 
system is obtained as [43] 
 

 )]([)]([)]([ rFrFrF exid
                                          (5) 

 
where )]([ rFid

  is the ideal part (It is the contribution of 
ideal gas) and )]([ rFex

  is the excess part (It is contribution 

of molecular interactions). It is a standard method to 
calculate Helmholtz free energy F[] that separates ideal 
part )]([ rFid

  and makes some approximations for the 
excess part )]([ rFex

 . The ideal part is calculated as [43]: 



 

 

 

Theoretical Study of Polyethylene Crystallization/Phys. Chem. Res., Vol. 4, No. 2, 209-219, June 2016. 

 211 

 
 
 )()(])()[ln()]([ int rrVrdrrrdrFid

     11       (6) 

 
with )(int rV  being intramolecular interaction. The second 

term in Eq. (6) can be neglected because long-range effect is 
negligible in MWDA and WDA.  
 The excess Helmholtz free energy Fex[] of a classical 
many-body system is a unique function of density and it is 
shown below [36]: 
 
 [ ] ( ) ( ;[ ])ex exF dr r r    

                                              (7) 

 
where ( ;[ ])ex r 


 is the excess free energy per particle. In 

weighted density functional approximation, Fex[] is 
obtained as [36]: 
 

 )()(][ rrrdFWDA
ex

  0                                                (8) 

 
Where 0 is the excess free energy per particle of 
homogeneous liquid, )(r  is the mean weighted density per 
particle )(r regarding weighted functional  and it is 

calculated as follows [36]: 
 

 )](;[)()( rrrrrdr 
                                             (9) 

 
Weighted functional satisfies a normalization condition:  
 

 1[ ; ( )]dr r r r   
                                                        (10) 

     
Also, the relationship between correlation functions of N 
particles and Fex[] is defined as below [36,47]: 
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Modified Weighted Density Approximation 
 In this article the modified weighted density functional 
approximation is used because it is simple and is in a better 
agreement with simulations [47]. The weighted density 
approximation method is approximated for ( ,[ ])ex r 


. This 

method makes it possible to calculate the localized excess 
free energy per particle. Also, the formulation focuses on 
excess free energy per particle Fex/N; in modified weighted 

 
 
density approximation method, which N is the number of 
particles of the system. Since Fex[]/N  does not depend on 
the position of the particle compared with ( ,[ ])ex r 


, we 

show the weighted density by ̂  that the difference between 
it and ( )r

  is its independence position. 

 The approximation used in the calculation of Fex[]/N  
can be written as [36]: 
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where: 
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The weight density functional satisfies the normalization 
condition in Fourier space [48]: 
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The weighted density ̂  must be calculated for the study of 

the Helmholtz free energy. This calculation is simple in 
Fourier space, because in Eq. (13) the volume integrals are 
converted to summation in inverse lattice vectors [48]: 
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where s is mean solid density, G and G  are a Fourier 

component of solid density and weighting function, 
respectively, at which Fourier component is related to mean 
solid density through  4/2G

sG e . 
 We can assume that )(rs


  is focused as a summation of 

normalization of Gaussian on the R


situation of lattice in 
FCC lattice. Therefore )(rs

  can be written as [36]: 
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where  is localized parameter and is zero for homogeneous 
liquid limit and atoms are localized in liquid-to-solid phase  
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transition with the  increase. ̂  can be written as the 
following replacing GG  ~,  in Eq. (15) [48]: 
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The Helmholtz free energy per particle and direct 
correlation function is needed for calculation of ̂ . In this 

article we used a direct correlation function of polyethylene 
(N = 6429) [48,49]. 0 is defined via PY approximation  as 
follows [48,49]: 
 
 2

0 ( ) (3 / 2)[(1/(1 ) ) 1] ln(1 )                                   (18) 

 
where  = 3/6  
 
For calculation of ideal part, Fid[]/N can be written as [48]: 
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For  > 50, we can use the following equation [48]: 
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That  = 0.006/s is heat wavelength of the system. The 
Helmholtz free energy per particle of classical many- body 
system is calculated as below with the calculation of 
Fid[]/N, Fex[]/N [48,49]: 
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In the liquid phase, we used the Carnahan-Starling 
approximation for calculation, because it is exactly against 
PY approximation for the liquid phase, therefore we can 
write [50]: 
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Fex/N is calculated by Eq. (14), and Eq. (22) for liquid 
phase.  Fid  is  calculated  replacing  solid  density  by  liquid  

 
 
density in (19) for liquid phase and is integrated, which 
results in [36]: 
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RESULTS AND DISCUSSION 
 
Direct Correlation Function of Polyethylene 
 The direct correlation function must be replaced with the 
potential of the systems in the density function theory 
formalism. The direct correlation function for the hard 
spheres potential [30-36], Lennard-Jones potential [51] etc. 
has been calculated earlier. In this paper, the direct 
correlation function is calculated using Fig. 1 for 
polyethylene [46]. We calculated the direct correlation 
function C(r) and Fourier transform it C(k) using 
experimental Curve Fitting polyethylene N = 6429 [46]. 
 Now, the direct correlation function as a polynomial of 
degree 3 is obtained by drawing the function, fitted with an 
error of less than 0.03, as shown in Fig. 1. First, we write 
the correlation function as a polynomial of degree 3: 
 

 
2 3( ) ( / ) ( / ) ( / )C r a b r c r d r                                    (24) 

 
where a = -2.70000, b = 47.27416, c = -278.34645 and        
d = 484.09578, then using Fourier transformation and 
replacing  by , correlation function is obtained Fourier 
transform as: 
 
 ]//[)( 64 1248 kdkbkC                                          (25) 

 
Figure 2 shows Fourier transforms of the correlation 
function. 
 
Diameter of Monomers in Polyethylene 
 We studied a lot of C(r), C(k) and found that the best 
agreement of MWDA method for hard sphere diameter Is 
CH2 = 3/7 A. According to the experimental results of 
CH2, Chandler result [52] was  = 3/7 A, Slonimskii result 
[53] was  = 4/92 A, which as you can see, our results are 
in better agreement with experimental results. The exact 
amount of the monomer calculated by X-Ray and  = 3/90 
A that it has calculated with  McCoy  [46].  The  results  are 
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Fig. 1. (a) Direct correlation function for polyethylene (dashed line; polymer RISM theory; T = 413 K and hard  
           spheres solid line; Percus-Yevick theory) at  the  phase  transition [46]. (b) Fitness  of  Direct  correlation  

            function of polyethylene. 
 
 

 

Fig. 2. Plot C(k) for crystallization of polyethylene (N = 6429, s = 0.83). 
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presented in Table 1  and in Fig. 1, at which we can 
compare own results whit McCoy result of the P-RISM 
method [46]. 
 
Liquid and Solid Phase Density of Polyethylene 
 At first, we selected s = 0.9 and changed it to 1.1 with 
0.001 interval units. (Liquid freezing point ranges of hard 
sphere) [48,49]. After that we calculated lattice constant 
FCC a = (4/s)1/3 as functions of s, and changed   from 1-
250 with one interval units. Then, inverse lattice vector was 
calculated for 6200 consecutive shells using the calculated 
lattice constant in which the smallest vector ),,()( 11121

a
G 


  

is equal to 321
a

G 
)(

 . Then, initial ̂  was selected and 

6/̂   was calculated. After that, we calculated 
  );( GC 2


 for each G


 from 1-6200 [54,55]. 

 )ˆ(
  is obtained from differentiation of 0() in Eq. 

(18) with respect to ̂  and replacing  in that. 
Then, ),(ˆ  s

is calculated with )ˆ(
  in Eq. (17). Now, we 

calculate Eq. (17) as self constantly to give ̂ with requested 

accuracy. Then, we obtain Fid[]/N by Eq. (20) and Fex[]/N 
by Eq. (12). Finally, we calculated F/N

 
by Eq. (21).  

  Figure 3 shows F/N as a function of , which  is half 
the width of  Gaussian. The minimum point in Fig. 3 shows 
equilibrium state of the system. Now, for liquid phase, we 
calculate F/N

 
using 0 in Eq. (22) and we achieve Fex/N. 

Then, Fid/N is derived from Eq. (23). Finally, we calculate 
Helmholtz free energy per particle for the liquid phase of 
Eq. (21).  
 Figure 4 shows free energy of solid and liquid phases of 
polyethylene (N = 6429) at the point of transition. The 
calculation of solid and liquid phase densities is carried out 
with two methods. In the first method, we found the tangent 
of two curves. The contact points of this tangent and two 
curves could be considered as solid and liquid phases in 
freezing point, respectively.  
 In the second method, we used the polynomial of degree 
2 for free energy of solid and liquid phase curves. Hence, 
using these relations' differentiations, we calculate the 
chemical potential and then thermodynamic potential, 
according to the following equations [48,49]: 

 
 
         Table 1. The  Results  of  Monomer  Diameter of  
                        Polyethylene in Different Methods  
 

 Method 

3.7 0A Chandler [52] 

4.92 A Slonimskii [53] 

3.90 A X-Ray diffraction  [46] 

3.70 A This work (MWDA) 
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 Equating Eq. (27) with Eq. (28) in the coexistence 
condition leads to [36]:  
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at which s and l are obtained by Eq. (28) 
 
Isothermal Compressibility Coefficient of Liquid 
Phase of Polyethylene  
 We calculated the isothermal compressibility coefficient 
of the liquid phase of polyethylene in coexisting condition 
with crystallization phase in putting related diameter of hard 
sphere and thermodynamic pressure in isothermal 
compressibility coefficient relation and differentiating 
respect to density as follows [59]: 
 

 
 32 3/ (1 ) / 1P                                              (29) 

 
For calculation of compressibility factor of polyethylene we  
 

 
1/ ( / )TK p                                                           (30) 

 
Finally, we have: /KT  = 0.77 
Table 3 shows our result compared with McCoy  result.  As  
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shown in Table 3, the difference between our result and 
McCoy's is about 10%, confirming the compatibility 
mapping to study the linear polymers. 
 
Lindemann Criterion, Chemical Potential, and 
Solid and Liquid Phase Packing Fraction of 
Polyethylene 
 The chemical potential of  polyethylene crystal (N = 
6429) is obtained as bellow using packing  fraction and 
diameter monomers  = 3/7 A [36]: 
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Lindemann criterion is calculated as [36]: 
 
 
 15403

2 .
a

L


                                                          (31) 

 
The rate of change of Lindemann criterion is a criterion for 
liquid-to-solid phase transition. The chemical potential and 
solid and liquid phase packing fraction were calculated by 
s/6, l/6, respectively [36]. 
  Despite the high importance of these quantities for 
polyethylene (N = 6429), they have not been calculated yet. 
Therefore, we calculate  them,  though  we  cannot  compare 

 

Fig. 3. The free energy of crystallization phase of polyethylene as a function of  (s = 0.83). 

 

 

Fig. 4. The free energy of solid and liquid phase of polyethylene (N = 6429). 
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         Table 2. Comparison  of  Solid  and  Liquid Phase  
                       Dnsities of Polyethylene in the Transition 
                       Point of Different Methods. 
 

s l Method 

0.95 0.78 Experimental [56-58] 

1.13 0.77 P-RISM [46] 

0.82 0.78 MWDA (this work) 

 
 
         Table 3. Comparing the Results of Compressibility  
                        Factor of Polyethylene in Liquid Phase in  
                        Different Methods. 
 

/KT Method 

0.70 McCoy [46] 

0.77 MWDA (this work) 
 
 
         Table 4. The  Results  of   Lindemann   Criterion,  
                       Chemical Potential and Solid and Liquid  
                       Phase Packing Fraction of  Polyethylene  
                       by MWDA Method  
 

L l/6 s/6 μs 

0.154 0.40 0.43 6.083 

 
 
our results of these quantities with other works (Table 4). 
But because Lindemann criterion, chemical potential and 
solid and liquid phase packing fraction of polyethylene are 
functions of density and we showed the accuracy of density 
in Table 2, so our results has been confirmed. 

  
CONCLUSIONS 
 
 In this article we presented the formulation method of a 
density functional theory MWDA for linear polymers. Some  

 
 
rational approximations have been used to connect MWDA 
method to linear polymer chain model. For example, 
regarding the fact that chain polymers are only crystallized 
when the Cohen's effect size would be long enough in 
comparison with the range of nuclear-solid interactions 
between monomers, so we can use the standard model of 
hard spheres for all of them. The connection plays a rather 
small role in the crystallization of linear polymer chain 
model and it is limited to a direct correlation function 
independent of temperature. Increasing the chain length 
increases the chance of knotting, and crystallization will be 
more simple, as the result the correlation function used in 
this research was calculated just for polyethylene with        
N = 6429. After running computer programs and conducting 
calculations based on MWDA, as explained, the results 
were compared with their corresponding valued obtained 
through famous P-RISM method and  experiments (Figs. 3 
and 4). As obviously seen in Table 2, our results are closer 
to experimental quantities, both in s and l values, and are 
more exact in comparison with the P-RISM method. The 
liquid phase density in MWDA method, which is equal to 
its experimental quantity, is closer to its real value, by 0.01, 
compared to that in the P-RISM method. Also, the crystal 
phase density is closer to real quantity, by 0.06, compared to 
that in MWDA method. As shown in Table 1, our results for 
the length of monomers in the curve fitting method used in 
this research, is completely in agreement with other methods 
and experimental results. Also, quantities such as 
Lindemann criterion, chemical potential and solid and liquid 
phase packing fraction have been calculated in Table 4. 
Regarding the fact that they are calculated based on s, l, 
we can insist on their accuracy. Accordingly, it has been 
verified that the method of density functional theory based 
on MWDA, used in this research, has the capability to 
correct the analytical results related to liquid-solid phase 
transition polymer linear chain model, remarkably. 
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