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 Support vector regression (SVR) is a learning method based on the support vector machine (SVM) that can be used for curve fitting 
and function estimation. In this paper, the ability of the nu-SVR to predict the catalytic activity of the Fischer-Tropsch (FT) reaction is 
evaluated and the result is compared with two other prediction techniques including: multilayer perceptron (MLP) and subtractive 
clustering-adaptive neuro-fuzzy inference system (SUB-ANFIS). The Fischer-Tropsch synthesis (FTS) was studied in a fixed bed micro-
reactor under different operating conditions. An extensive experimental data set of MgO supported Fe-Co-Mn catalyst was used to predict 
the FTS. The input variables of three aforesaid models were: reactor temperature, H2/CO ratio and total pressure, while the CO conversion 
(catalytic activity) was used as an output variable. Finally, the achieved results from these approaches were compared. The results reveal 
that the nu-SVR model has more accurate (MSE = 0.0014) than the MLP (MSE = 0.0097) and ANFIS (MSE = 0.0043) approaches.  
 
Keywords: Support vector regression, Fischer-Tropsch (FT) reaction, Multilayer perceptron, Adaptive neuro-fuzzy inference system, 
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INTRODUCTION 
     
 The Fischer-Tropsch synthesis is a chemical process for 
converting coal-derived syngas (CO and H2) and natural gas 
to valuable liquid fuels [1,2]. For this process, the group 
VIII metals, such as Fe, Co, Ni and Ru are used as a catalyst 
[1,3]. Mixed-metal catalysts are often used in FTS because 
of higher activity, selectivity and stability than single 
component ones [4,5].  
 Catalyst development and reactor design of the FTS 
requires a thorough understanding of the behaviors, 
comprehensive kinetic studies and knowledge of the 
mechanisms governing this process [6,7]. The rate of 
synthesis gas consumption depends on the operating 
conditions, such as temperature, pressure and feed gas 
composition [2,8]. 

 
*Corresponding author. E-mail: mirzaei@hamoon.usb.ac.ir 

 
 Provision of the experimental numerous data requires a 
significant amount of attempt, time and money. Thus, the 
experimental work can be improved using some 
computational methods to interpret the results of studies [9-
11]. Powerful computational methods, such as artificial 
neural networks (ANNs), neuro-fuzzy (NF) systems and 
support vector machines (SVMs) are common in the 
modeling of non-linear empirical data with a strong 
predictive ability [12-14].  
 A neural network model of a phenomenon (in this 
research work, the catalytic activity) treats as a ‘black-box’ 
without any external information [15]. The common 
network structure in modeling of complex behaviors is the 
multilayer perceptron (MLP). The MLP has one or more 
hidden layers of neurons [16,17]. Several prosperous 
applications of ANNs in the fields of chemistry and 
chemical engineering have been reported in the literatures 
[18-20].  Numerous  successful  implementations  of  neural  
 



 

 

 

Mirzaei et al./Phys. Chem. Res., Vol. 4, No. 3, 391-405, September 2016. 

 392 

 
network modeling on catalyst studies were described by 
Günay and Yildirim [21,22].  
 Neural network algorithms have shortcomings, such as 
difficulty of tuning the network parameters for achieving a 
proper result, the risk of over-fitting and lack of adaptation 
[23,24]. Because of these weaknesses, some techniques are 
developed to improve the neural network model [24]. 
 Among the new methods of modeling, fuzzy systems 
have a special place. The important point of fuzzy logic is 
using the human experiment in the modeling. The primary 
mechanism for doing this model is a list of sentences IF-
THEN that are called laws [25,26]. Combined use of fuzzy 
systems and ANN introduces the adaptive neuro-fuzzy 
inference system (ANFIS) as a powerful tool for modeling 
and prediction [26,27].  
 The SUB-ANFIS combines the ANFIS and the 
subtractive clustering to improve the learning algorithm. 
The subtractive clustering considers each data point as a 
potential cluster center, according to the density of 
surrounding data points [28,29].  
 Support vector machines (SVM) are a powerful new 
technique for solving classification and regression 
problems. This method was proposed by Vapnik and his co-
workers [30-32]. The regression formulation of SVM is 
based on the structural risk minimization (SRM) principle, 
so that it has a higher generalization performance than the 
other conventional algorithms, such as ANN, which 
implements the empirical risk minimization (ERM) 
principle in solving many machine learning problems. The 
SRM minimizes an upper bound on the generalization error 
while the ERM only minimizes the training error [33-35]. 
The SVM methods are more flexible than the other 
conventional algorithms [30]. A review of the basic ideas 
SVM for regression and function estimation has been given 
in [36] and the results confirm the preference of SVM. 
Recently, SVMs [14,37] have been applied to solve 
nonlinear predicting problems in various fields. In [37], the 
learning method based on SVM has been applied for 
predictive modeling in heterogeneous catalysis.  
 Support vector regression (SVR) is a new learning 
method based on SVM that can be used for curve fitting and 
function estimation [38].  
 The successful applying of ANN, ANFIS, and SVR 
approaches  in  modeling,  persuaded/motivated   us   to  use 
 

 
these approaches in modeling and data prediction of FTS. 
The performance of these approaches in data prediction has 
been compared in a few studies [39-43].  
 In this study, the FT reaction is carried out upon MgO 
supported Fe-Co-Mn ternary catalyst prepared using the 
fusion procedure over the fixed bed micro-reactor. The 
obtained experimental data of this process are used for 
modeling the system based on ANN, ANFIS and SVR 
approaches. In this paper, the ability of the nu-SVR model 
for prediction of the catalytic activity of the FT reaction is 
evaluated and the obtained result is compared with two 
other prediction techniques, MLP and SUB-ANFIS. 
 In the present research work, at first, the method 
achieving the kinetic data are explained. Then, the SVR 
model and data processing are introduced. Finally, the 
obtained results from SVR model are compared with the 
other approaches.  
 
EXPERIMENTAL  
 
Catalyst Preparation 
 The 33% Fe/ 33% Co/ 33% Mn/ 10% wt. MgO catalyst 
used in this study was prepared using fusion procedure, 
according to our previous work [44].  
 
Catalyst Testing 
 The experiments were carried out in a fixed bed stainless 
steel micro-reactor with a composite catalyst of 1.0 g. A 
complete description of the reactor setup and analysis 
method has been reported in our previous works [1,45]. 
 
Kinetic Experimental Data 
 The Fischer-Tropsch reaction was carried out in a fixed 
bed micro-reactor containing the required amount of MgO 
supported Fe/Co/Mn catalyst. Prior to synthesis gas 
exposure, the catalyst was kept in situ pre-reduced at 
atmospheric pressure using H2 (30 ml min-1) and N2 (30 ml 
min-1) gas mixture at 350 ºC for 14 h. After the reduction, 
purified H2, CO and N2 gases were fed into the reactor. The 
partial pressures of CO and H2 were varied. In each test, 1.0 
g catalyst was loaded in the middle of reactor and the 
reactor operated about 12 h to ensure steady state operations 
were attained. The feed and products were analyzed using 
an on-line  gas  chromatography  (Thermo ONIX UNICAM 
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   Table 1. The Experimental Conditions and the Obtained Kinetic Results 
 

Run 
number 

T 
(K) 

H2/CO 
(molar ratio) 

Ptot 
(bar) 

Xco 

(%) 
Run 

number 
T 

(K) 
H2/CO 

(molar ratio) 
Ptot 

(bar) 
Xco 

(%) 
1 523.15 2 10 14.23 37 503.15 2 10 6.47 

2 523.15 2 8 14.12 38 503.15 2 8 5.63 

3 523.15 2 6 13.02 39 503.15 2 6 11.12 

4 523.15 2 4 13.42 40 503.15 2 4 10.23 

5 523.15 2 2 8.93 41 503.15 2 2 9.54 

6 523.15 2 1 10.24 42 503.15 2 1 6.98 

7 523.15 1.5 10 11.37 43 503.15 1.5 10 5.06 

8 523.15 1.5 8 11.51 44 503.15 1.5 8 9.23 

9 523.15 1.5 6 11.10 45 503.15 1.5 6 10.12 

10 523.15 1.5 4 10.67 46 503.15 1.5 4 8.01 

11 523.15 1.5 2 10.36 47 503.15 1.5 2 7.67 

12 523.15 1.5 1 8.61 48 503.15 1.5 1 5.23 

13 523.15 1 10 7.56 49 503.15 1 10 7.26 

14 523.15 1 8 8.65 50 503.15 1 8 4.07 

15 523.15 1 6 7.98 51 503.15 1 6 7.76 

16 523.15 1 4 6.86 52 503.15 1 4 3.78 

17 523.15 1 2 6.59 53 503.15 1 2 3.34 

18 523.15 1 1 3.51 54 503.15 1 1 2.39 

19 513.15 2 10 9.54 55 493.15 2 10 6.13 

20 513.15 2 8 14.03 56 493.15 2 8 5.71 

21 513.15 2 6 8.63 57 493.15 2 6 4.16 

22 513.15 2 4 12.18 58 493.15 2 4 3.21 

23 513.15 2 2 8.13 59 493.15 2 2 2.85 

24 513.15 2 1 7.86 60 493.15 2 1 2.33 

25 513.15 1.5 10 11.72 61 493.15 1.5 10 3.72 

26 513.15 1.5 8 10.63 62 493.15 1.5 8 3.31 

27 513.15 1.5 6 9.61 63 493.15 1.5 6 3.03 

28 513.15 1.5 4 8.84 64 493.15 1.5 4 2.77 

29 513.15 1.5 2 7.26 65 493.15 1.5 2 2.51 

30 513.15 1.5 1 6.75 66 493.15 1.5 1 2.16 

31 513.15 1 10 8.27 67 493.15 1 10 1.87 

32 513.15 1 8 7.82 68 493.15 1 8 2.18 

33 513.15 1 6 6.72 69 493.15 1 6 1.69 

34 513.15 1 4 5.96 70 493.15 1 4 1.48 

35 513.15 1 2 6.45 71 493.15 1 2 1.14 

36 513.15 1 1 2.72 72 493.15 1 1 0.69 
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PROGC+) to obtain the kinetic data.  
 As shown in Table 1, the experimental conditions are 
ranged from 220-250 ºC for temperature; 1-10 bar for total 
pressure and 1-2 for H2/CO ratio. All experiments were 
carried out at a constant GHSV of 6600 h-1 and the catalyst 
particle size was lower than 0.297 mm. 
 The catalytic activity is defined as the ability of catalyst 
to convert input feed to product and is generally expressed 
by CO conversion in FTS.  
 
METHODOLOGY 
 
Support Vector Regression  
 Support vector regression (SVR) is an application of 
SVMs [30,39]. In other words, SVM can be extended to the 
task of regression with the introduction of an ε-insensitive 
loss function, called SVR. The ε-insensitive SVR 
formulation was proposed by Vapnik et al. [38]. In contrary 
to the neural network that tries to define the complex 
functions of the input space, the initial aim of SVR is the 
non-linear mapping of data into a higher dimensional 
feature space using the kernel functions and then using the 
simple linear functions to make linear decision boundaries 
in the new space [46]. Assume that a data set of m training 
samples    1,2,...,

,i i i m
x y


 is given, where for each input data 

m
ix R , let iy R  be the desired output value. The SVR 

method with the ε-insensitive loss function yields the 
regression function, y = f (x), which exactly predicts an 
output value corresponding to a new set of data points. The 
prediction functions f (xi) are expanded on a subset of the 
training data, namely the support vectors (SVs) [39]. 
According to Fig. 1, the Eq. (1) is assigned to the ε-
insensitive loss function. Therefore, the value of ( )y f x   

for all data should be minimized: 
 

 ( )y f x  
     ( ) ,   if      ( )   

0,      otherwise

y f x y f x     



             (1) 

 
where ε is the tolerance of error. 
 Assume that the non-linear regression estimation 
function nf R R  , is as follows: 

 

 ( ) ( ) ,t
if x w x b                                                             (2) 

 

 
where ( )i x , w and b are input features, weight vector in the 

feature space and scalar threshold, respectively. The ε-
insensitive SVR formulation is used to calculate w and b 
coefficients as the solution of the following quadratic 
programming (QP) problem [30,34,47,48]: 
 

 , , ,
min

iw b  
 =  

1

1
( )

2

m
t

i i
i

w w C   



 
                                          

(3)
 

                                                                                     

subject to         
( ) ,

( ) ,

, 0, 1, 2,...

t
i i i
t

i i i

i i

w x b y

y w x b

i m

  

  

 





    
    


 

                              (4) 

 
where i  and i

  are slack variables, as  illustrated in Fig. 1, 

and C > 0 and ε > 0 are input parameters. By introducing 
Lagrange multipliers and exploiting the optimality 
constraints, the optimization problem in Eq. (3) can be 
rewritten as [49]:  
 

 1

( , , ) ( ) ( , )
m

i i i i i
i

f x K x x b    



                                     (5)                                              

 0 i
 , i C  , i = 1,2,...m  

 
where ( , )iK x x  is the kernel function, and i  and i

  are 

Lagrange multipliers which can be calculated by 
maximizing the dual function of Eq. (5) as follows: 
 
maximize    

1 1

( ) ( )
m m

i i i i i
i i

y     

 

   
, 1

1 ( )( ) ( , )
2

m

i i j j i j
i j

K x x    



        (6)   

             
under the constraints, 

1

( ) 0
m

i i
i

  



  ; 0 i C  , i =1,2,…,m; 

0 i C   , i =1,2,…,m. 

Eventually, the estimate of the regression function can be 

obtained as:  
 

 ( ) ( ) ( , )i i i jf x K x x b    , for any nx R                        (7) 

                                                  
Since the mapping   is usually non-linear and unknown, 

the kernel function, K, is used to calculate the legitimate 
inner product of the two vectors xi and xj, in the feature 
space ( )ix  and ( )jx , so ( , ) ( ) ( )i j i jK x x x x   . 
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 Generally, any valid function satisfying Mercer’s 
condition [49] can be used as the kernel function. Between 
the kernel functions, Gaussian radial basis function (RBF) is 
the most commonly used [50]. This function is defined as: 
Radial Basis Function (RBF): 
 

 
2

( , ) exp( )i j i jR x x x x                                                   (8) 

 
where   is kernel parameter. 
 To build an SVR model efficiently, we need to select the 
regulation parameter C, the width of the tube   and the 
parameter of the chosen kernel function [42].  
 In the classical SVR, finding a proper value for the 
parameter   to achieve a good performance is a challenge. 
Nu-support vector regression (nu-SVR), introduced by 
Schölkopf, is a new class of support vector machine (SVM) 
[51]. In nu-support vector regression, the problem of finding 
  is partially resolved so that   also becomes a variable in 
the optimization process and is controlled by the extra term 

(0,1]  , which tries to minimize   [39,51]. v is the upper 

bound on the fraction of error points and a lower bound on 
the fraction of points inside the  -insensitive tube. Thus, a 
proper   can be automatically found by selecting v [36,51]. 
In this method, the Eq. (3) is modified as follows: 
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, , 0, 1,2,...

t
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t

i i i
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w x b y
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  

  

  





    
    

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                                 (10) 

 
where 0 ≤ v ≤ 1 and C > 0. 
 By introducing Lagrange multipliers, i

 , i


 and 0  , 

it can be proved that the dual problem changes as follows: 
maximize    
 

 1 ,

1( ) ( )( ) ( , )
2

m m

i i i i i j j i j
i i j
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
                    (11) 

 
under the constraints,  
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where  ( , )i jK x x   denotes  the   matrix   of   kernel  functions 

 

 
Fig. 1. Graphical depiction of an ε-insensitive loss function and slack variable. 
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with ( , ) ( ) ( )i j i jK x x x x   as kernel function [50]. Finally, 

the regression estimate can be obtained to take the form 
 

 1
( ) ( ) ( , )

m

i i i
i

f x K x x b 


                                             (13) 

Here b can be computed by exploiting Karush-Kuhn-Tucker 
(KKT) conditions [36,52]. This equation is the so-called 
support vector expansion [34,53].  
 
Data Acquisition and Processing 
 As mentioned before, the FT reaction performed on the 
MgO-supported Fe/Co/Mn catalyst under different 
operating conditions and the obtained data are shown in 
Table 1. The whole data in FTS were obtained in the 
physical chemistry and chemical engineering lab.  
 In this study, an extensive experimental data set of MgO 
supported Fe/Co/Mn catalyst has been used to develop three 
approaches, consisting of nu-SVR, ANFIS and MLP, in 
modeling of FT reaction. The input variables of three 
approaches are reactor temperature, H2/CO ratio and total 
pressure, while the CO conversion (catalytic activity) is 
used as the output variable. Four data sets, including 72 data 
in each set are used as the input/output variables of all these 
approaches. In these modeling approaches, the whole set is 
separated randomly into training and testing sets, so that 58 
(80%) of the whole set of cases and the remaining 14 (20%) 
are used as training data and testing data, respectively. The 
testing set is held out during training stage, but it is used to 
compare the different models [54]. For this purpose, all the 
input/output variables are normalized in the range of [0.1, 
0.9] using the following formula:  
 

 
min

max min
0.8( ) 0.1i

norm
X X

X
X X


 


                                           (14) 

 
where Xi is the input or output variable X, and Xmin and Xmax 
are the minimum and maximum values of the variable X 
[55].  
 All models are created by writing computer codes in 
MATLAB 8.0. 
 
Evaluation Criteria for Models Performance 
 Three statistical parameters are used to verify the 
accuracy o f  the  models,  including coefficient t correlation  
 

 
(R2), mean square error (MSE), and root-mean-square error 
(RMSE). The model predictions are in optimum points if 
the values of R2 are close to their maximum, as well as MSE 
and RMSE are close to their minimum. The R2, MSE and 
RMSE are calculated from the following equations:  
 

 Coefficient Correlation (R2) 
2

, ,exp
1

2
,

1

( )
1

( )

N

i pred i
i

N

i pred
i

X X

X X






 






   

(15)

 
                                                        

 Mean Square Error (MSE) 
2

, ,exp
1

( )
N

i pred i
i

X X

N






         (16) 

 
                                                          

 Root Mean Square Error (RMSE) 
2

, ,exp
1

( )
N

i pred i
i

X X

N






 

                                                                                          (17) 
 
RESULTS AND DISCUSSION 
 
Computational Results 
 Support vector regression (SVR) for prediction of 
CO conversion. The SVR model is used to develop the 
prediction of catalytic behavior in the FT reaction. First, 
input data, consisting of T, Ptot, and H2/CO ratio, are fed to 
the training model. These input data are mapped into a 
feature space by the map function  . Then, using the kernel 

function dot products are computed with the images of the 
training samples under the map   . The weights in the SVR 

represent the knowledge acquired from the data [43]. The 
final prediction (output variable) is obtained from Eq. (13). 
Figure 2 shows the general architecture of SVR model used 
in this study [43]. 
 The SVR model is prepared with the package LIBSVM 
[56]. Type of kernel function has a significant effect on the 
accuracy of the model. In this work, the SVR modeling is 
accomplished using Laplacian and inverse distance kernel 
functions [57] through the routine nu-SVR. These functions 
used are defined as follows: 
 
Laplacian:             ( , ) exp( )i j i jR x x x x                   (18) 
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 Inverse Distance: 1( , )

( 1)i j
i j

R x x
x x


 

                  (19) 

                                                             
where σ  is  the kernel parameter. Three optimal parameters 
v, C and σ, of this model are given in Table 2.  
 Performances of nu-SVR model for prediction of 
experimental CO conversion values in training and testing 
stages are depicted in Figs. 3 and 4, respectively. The 
obtained results from the nu-SVR model are shown in Table 
3. The MSE values for training and testing stages represent 
a high correlation between experimental and predicted 
results. 
 Multilayer perceptron (MLP) neural network for 
prediction of CO conversion. In this section, a feed 
forward neural network (with two hidden layers) based on 
the back propagation learning rule is used to predict the CO 
conversion (Xco) in FTS. As well as SVR model, the MLP 
neural network has three input neurons (temperature, H2/CO  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ratio and pressure) and one output neuron (CO conversion). 
The number of neurons in the two hidden layers is adjusted 
to create the best fit. Using trial and error method [58], and 
changing the initial parameters, an MLP model architecture 
with 8 and 6 neurons in hidden layers provides the best 
prediction of the CO conversion in terms of MSE. In this 
network, the hyperbolic tangent transfer function (tansig) at 
two hidden layers and linear transfer function (purelin) at 
output layer are used as activation function, while the delta 
rule is employed as the error correcting rule [21,58]. The 
Levenberg-Marquardt (LM) optimization algorithm is used 
for network training [59]. The experimental data used for 
training and testing of the network are presented in Table 1. 
The training data set including three inputs, and its 
corresponding experimental output (target) are presented to 
the network. The learning algorithm adjusts the weights, so 
that the output responses to input values are close to the 
target.  To  evaluate  the  performance,  network  outputs are  
 

 

 

Fig. 2. Training scheme of the SVR model [43]. 
 
 

                                   Table 2. Optimal Parameters for nu-SVR Model 
 

  σ  v C  Kernel function 

 
3.536 

 
0.7 

 
30 

  
Laplacian 

 
3.608 

 
0.7 

 
30 

  
Inverse Distance 
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Fig. 3. Experimental vs. predicted CO conversions obtained by the nu-SVR model with Laplacian kernel  
               function for training and testing stages. 

 
 

 
Fig. 4. Experimental vs. predicted CO conversions obtained by the nu-SVR model with Inverse Distance  

               kernel function for training and testing stages. 
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compared with the targets. The results for training and 
testing data are presented in Table 4. The MSE values for 
training and testing stages are 0.0074 and 0.0097, 
respectively. Also, scatter diagram of MLP predicted data 
vs. experimental data for training and testing stages is 
shown in Fig. 5.  It shows that  the predictions of  the MLP 
model fit relatively well with the experimental data.  
 Adaptive neuro-fuzzy inference system (ANFIS) for 
prediction of CO conversion. In this section, ANFIS 
network is used to predict the CO conversion (Xco) in FTS. 
ANFIS performances depend intensively on the choice of 
the available data set including input/output variables, and 
the domain used for training purposes [60].  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The structure of ANFIS network contains three input 
variables and one output variable of the FT reaction. The 
fuzzy interference system (FIS) is created using sub-
clustering technique (is called SUB-ANFIS) [29]. The SUB-
ANFIS model is made using 58 rules and cluster radius is 
0.15. The hybrid learning algorithm, that is a combination 
of the least-squares method and the back-propagation 
gradient descent method, is applied to update parameters of 
ANFIS [61]. Up to 50 epochs are specified for training 
process to assure the gaining of the minimum error 
tolerance. 
 The prediction performance of ANFIS model for 
experimental  CO  conversion  values in training and testing  
 

    Table 3. Obtained Results from nu-SVR Model for Prediction of CO Conversion 
 

 Testing set    Training set  
     R2      RMSE      MSE  R2     RMSE MSE 

Kernel function Approach 

   
   0.96 

     
      0.047 

   
 0.0022 

  
1.0 

 
3.9 × 10-4 

 
1.54 × 10-7 

 
Laplacian 

  
1.06 × 10-7 

   
   0.97 

       
      0.037 

  
  0.0014 

 

 
1.0 

 
 

 
3.2 × 10-4 

    

Inverse  
Distance 

 
 

nu-SVR 

 
 
                            Table 4. Obtained Results from ANN Model for Prediction of CO Conversion 
 

 Testing set    Training set  

R2 RMSE MSE  R2 RMSE MSE 

Approach 

0.81 0.098 0.0097  0.85 0.086 0.0074 ANN 

 
 
                     Table 5. Obtained Results from ANFIS Model for Prediction of CO Conversion 
 

 Testing set    Training set  

R2   RMSE MSE  R2     RMSE  MSE 

Approach 

0.88  0.065 0.0043  1.0        2.62 × 10-16 6.89 × 10-32 ANFIS 
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Fig. 5. Experimental vs. predicted CO conversions obtained by the MLP model for training and testing stages. 
 
 
 

 
 

Fig. 6. Experimental vs. predicted CO conversions obtained by the ANFIS model for training and testing  
                stages. 
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Fig. 7. Experimental results along with predictions of the models for training data. 

 
 
 

 

Fig. 8. Experimental results along with predictions of the models for testing data. 
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stages is shown in Fig. 6. As shown, the obtained values 
from the training and testing are very close to the 
experimental results. The performance of the ANFIS model 
is shown in Table 5. The best MSE values for training and 
testing stages are 6.89×10-32 and 0.0043, respectively. The 
MSE values show that the proposed ANFIS model has a 
good accuracy to predict the catalytic behavior in the FTS. 
 Comparison of nu-SVR with SUB-ANFIS and MLP 
models. According to the results presented in Tables 3, 4, 
and 5, it is obvious that the proposed nu-SVR model is more 
capable than MLP and SUB-ANFIS models in prediction of 
CO conversion values in Fischer-Tropsch synthesis. The 
prediction performances of nu-SVR with MLP and SUB-
ANFIS models are compared and the results are presented 
in Figs. 7 and 8 for training and testing stages, respectively. 
 
CONCLUSIONS 
 
 The FTS is one of the important processes for fuel 
production in the world. Finding a method for reducing the 
cost of processes is a great challenge for researchers. 
Therefore, many computational methods for modeling and 
prediction of FT synthesis have been proposed in recent 
years. In order to develop a theoretical model for data 
prediction, three approaches namely nu-SVR, MLP and 
ANFIS have been trained for prediction of CO conversion 
values in the FTS. In all three approaches, input dimensions 
are T, Ptot and H2/CO ratio, as well as the CO conversion 
value as the output. Firstly, nu-SVR model was designed 
based on the obtained data from FTS. Then MLP and 
ANFIS were trained using the same data. Finally, the 
achieved results from these approaches were compared. The 
results reveal that the nu-SVR model is more accurate (MSE 
= 0.0014) than MLP (MSE = 0.0097) and ANFIS (MSE = 
0.0043) procedures. As a result, although the nu-SVR model 
is much more complex than the two other models, it has 
more accurate results. Thus, it can be used for modeling 
when the experimental testing is very costly in money and 
time. 
 
NOMENCLATURE 
 
b Bias 
 
 

 
 

 
GHSV 

Gas hourly space velocity 

MSE Mean square error 
N Total number of data 
Ptot Total pressure (bar) 
R2 Correlation coefficient 
RMSE Root mean square error 
xi Input data 
Xi,exp Experimental data set 
Xi,pred Predicted data set 
Xco (%) Percentage of CO conversion 
 
 
X  

 
 
Average value of experimental output 

W Weight factor 
yi Desired output value 
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