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 In this paper, the Hartree-Fock method has been formulated to investigate some of the ground state properties of quasi-one-dimensional 
interacting electron gas in the presence of the magnetic field. The bare coulomb interaction between electrons has been assumed. For this 
system, we have also computed some of its thermodynamic and magnetic properties such as the energy, pressure, incompressibility, spin-
polarization and magnetic susceptibility for different values of the magnetic field. Based on the results, the total energy increases by 
increasing the density for all relevant magnetic fields. The system becomes more stable by increasing the magnetic field. The system also 
shows  a phase transition at high magnetic fields.       
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INTRODUCTION 
 
 In recent years, some researchers have been interested to 
the one-dimensional and quasi-one-dimensional fermionic 
systems [1-6]. One of these systems is the quasi-one-
dimensional electron gas which is a simple model for 
studying the metallic nanowires [7-9]. Many efforts have 
been made to understand the physics of quasi-one-
dimensional systems, experimentally [10,11] and 
theoretically [12-14]. Many-body effects of quasi-one-
dimensional electron gas with oscillator confinement have 
been described by local-field correction formulated by the 
self-consistent theory of Singwi, Tcsi, Land, and Sjolander. 
The exchange energy and correlation energy of system have 
been obtained with numerical methods [15]. 
Compressibility, chemical potential, screening properties, 
and bound-state energy of positively and negatively charged 
impurities have been derived analytically and numerically 
[16].  For   quasi-one-dimensional  electron  gas  with  long-  
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range coulomb interaction, spin-susceptibility and 
correction energy have been calculated by static-structure 
factor. Using the ground state energy calculations, the 
density and width dependence of the spin-susceptibility and 
compressibility have been investigated for the one-
dimensional electron gas with the long-range coulomb 
interaction [8]. Spin-resolved corrections have been studied 
at the ground state of a quasi-one-dimensional electron gas 
for an arbitrary spin-polarization with the method 
mentioned [17]. The ground-state properties of a one 
dimensional spin-1/2 fermionic system with an attractive δ-
function potential have been investigated by Bethe ansatz 
method [18]. Using the electron transport in the quasi-one-
dimensional electron gas, the dependence of energy level 
variation of one-dimensional quantum wires  on the spatial 
confinement and electron concentration have been 
shown[19]. The second quantization method has been also 
used to investigate some thermodynamic properties of pin-
polarized metallic nanowire in the presence of magnetic 
field by considering the interacting electron gas model for 
this system [9].  
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 The Hartree- Fock method is a varitional method which 
is used for calculation of many-body interacting systems. 
The self-consistent field approach was developed by 
Roothan to solve the Hartree-Fock theory [20]. Ciftja et al.  
used this method for a finite two-dimensional electron gas 
with a coulomb potential, and obtained the analytical 
expression for the energy of this system [21]. Inter-Landau-
level collective excitation spectrum of quasi-one-
dimensional electron gases cannot be explained by some 
techniques such as Kohn's theorem, so Yang and Aers  
utilized the Hartree-Fock method for this system [22]. The 
ground state energies of the non-magnetic and magnetic 
electron gases in one-dimension have been computed with 
the Hartree-Fock method in which the bare coulomb 
interaction between electrons has been assumed [23]. In this 
paper, we intend to formulate the Hartree-Fock method for 
calculating some properties of a quasi-one-dimensional 
interacting electron gas in the presence of a uniform 
magnetic field. We obtain an expression for the energy of 
system, and compute some thermodynamic and magnetic 
characteristics of this system as a function of magnetic field.                                                                                                                                              

 
HARTEE FOCK METHOD 
 
 Hamiltonian of a system is written as the following 
relation,  
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Where U(ri) is the single-particle hamiltonian and V(ri,rj)  is 
the interaction potential between particles. The energy of 
system is obtained by calculating the expectation value of 
Hamiltonian, 
 

 


 H
E                                                                           (2) 

                                                        
where  
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ψi(ri,si) is the single-particle wave function. The single 
particle wave function is normalized, 
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By inserting Eq. (3) in Eq. (2), we get the following 
relation, 
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Considering the normalization constraint of the single-
particle wave function (Eq. (4)), we minimize Eq. (5) with 
respect to the variation in the single-particle wave function. 
This leads to the following Hartree-Fock equation, 
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The third in the left side of the above equation is called  
exchange term. 
 
CALCULATION OF A QUASI-ONE-
DIMENSIONAL INTERACTING 
ELECTRON GAS IN THE PRESENCE OF 
MAGNETIC FIELD WITH THE HARTREE-
FOCK METHOD 
 
 We consider a system including the interacting electrons 
confined in a cylindrical container with length L and R (R 
<< L). For this system, we also consider the effect of ions as 
a uniform positive background. We compute some 
properties of this system by Hartree-Fock method as 
follows.                                                                                                                         

By applying the magnetic field, a spin-polarized system 
is given with N(+) spin-up and  N(-) spin-down electrons. The  
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number density of spin-up and spin down electrons is 
characterized by ρ(+) = N(+)/L and  ρ(-) = N(-)/L  , respectively. 
The spin-polarization parameter is defined as follows,                                                                                                                                          
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where -1 ≤ ξ ≤ 1 and ρ = N/L = ρ(+) + ρ(-) is the total number 
density of system. 
 In the presence of magnetic field, for our system, the 
single-particle Hamiltonian U(r) includes the kinetic energy 
of each electron, the interaction energy between each 
electron and total positive background (uion(r)), and the 
interaction energy between each electron and magnetic field 
(B),     

                                  (8) 
 
where  is the electron magnetic dipole moment and 
 

                                       (9) 
 
In above equation, ρion is the density of positive background. 
The potential energy due to the interaction between 
electrons, V(r,r’), is as follows, 
 

                                                 (10) 
 
Considering the charge neutrality condition (ρion = ρel) and 
using Eqs. (8), (9) and (10), according to Eq. (6), we get the 
following Hartree-Fock equation for the system,  
 

    (11) 
 
As also mentioned in the previous section, the  third  term in 

 
 
the left side of Eq. (11) is called exchange term.  
 For calculating the energy of system, we must compute 
the single particle energy εi by solving the Hartree-Fock 
equation (Eq. (11)). For this purpose, we take the single-
particle wave function ψi(ri) in the cylindrical coordinates 
[21]. 

  
                                                                                          (12) 
 
where Jm(γmnρ) is the Bessel function of order m. The single-
particle states are described by the quantum numbers m, n 
and k is the wave number of electrons along the axis of 
cylinder. Using the above single particle wave function (Eq. 
(12)), we get the following expression for the exchange 
term, 

           
                                                                                          (13) 
 
where we have inserted the following Fourier 
transformation for expression  
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 The aim of this paper is to obtain the ground state 
energy of this system, therefore we assign n = ni = nj = 1 
have m = mi = mj = 0. Now, we solve the above integrals 
numerically using the MAPLE software, and finally the 
following relation is obtained for the exchange term, 
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 By inserting Eqs. (12) and (15) in Eq. (11), we get  the 
following relation for single particle-energy εi , 
 

(16)  
 
 Since the system is spin-polarized, the total energy of 
system is 
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ii   is the single particle energy of spin-up 

(spin-down) electrons. After some algebra, we obtain the 
total energy per particle as the following relation,  
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For this system, )(
Fk and )(

Fk , the Fermi momenta of spin-

up and spin-down electrons, are obtained as follows [7], 
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According to Eqs. (7), (19) and (20), we can rewrite the 
total energy per particle as follows, 
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where Eexch is the contribution of energy related to the 
exchange term (exchange term),  
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Using the above relation, we can compute the total energy 
per particle for the system at various densities and magnetic 
fields. 
 
RESULTS AND DISCUSSION  
                                                                    
 In this section, we present our results for some 
properties of a quasi-one-dimensional interacting electron 
gas in the presence of magnetic field for R = 10 nm.                                 
 In Fig. 1, we have plotted the ground state energy per 
particle E/N vs. density for different magnetic fields. The 
results show that the ground state energy increases by 
increasing the density. There is no minimum point in the 
energy curve, therefore we can conclude that the system 
does not have any bond state. Our results also indicate that 
for each density, the energy reduces by increasing the 
magnetic field leading to a more stable system. This results 
is in agreement with that of Olszewski calculation [23]. We 
have also found that the magnitude of exchange energy (Eq. 
(22))  decreases  by  increasing  the  radius.  For example  at  
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Fig. 1. The ground state energy per particle as a function of density at B = 0.5 (solid curve), 400 

                  (dashed-dotted-dotted curve) and 800 T (short-dashed curve) for R = 10 nm. 
 

 
Fig. 2. The spin-polarization parameter at the equilibrium state of system as a function of the density at  
           B = 0.5 (solid curve),  50 (dashed curve), 100 (dotted curve), 400 (dashed-dotted curve) and 800  

           T (dashed-dotted-dotted curve) for R = 10 nm. 
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B = 0, the exchange energy of system for R = 10 nm is    
Eexch =  -0.00592 eV and for R = 5 nm is Eexch = -0.0065 eV. 
This behavior has been also concluded by Olszewski [23].                                                                                          
 The spin-polarization parameter as a function of density 
for various magnetic fields has been drawn in Fig. 2. This 
figure shows that the magnitude of spin-polarization 
parameter decreases by increasing the density, while it 
increases by increasing the magnetic field, especially at low 
densities. From Fig. 2, we also see that at high magnetic 
fields, the decreasing rate of magnitude of spin-polarization 
parameter becomes very large. In Fig. 3, the spin-
polarization parameter of a quasi-one-dimensional 
interacting electron gas has been plotted versus the 
magnetic field for different values of density. This figure 
shows that the spin-polarization parameter is almost zero for 
the magnetic fields less than B ∼ 30 T. It is seen that for the 
magnetic fields greater than about 100 T, the magnitude of 
spin-polarization parameter rapidly increases by increasing 
the magnetic field, and finally at high magnetic fields it 
becomes unity. Figure 3 shows that the value of magnetic 
field in which the spin-polarization becomes unity increases 
by increasing the density.                                                  
 Magnetic susceptibility is calculated by the following 
relation, 
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In Fig. 4, the magnetic susceptibility of a quasi-one-
dimensional interacting electron gas χ/N|| has been plotted 
versus the magnetic field for three different values of 
density. It is seen that for each density, the ratio χ/N||  has  
a maximum showing a ferromagnetic phase transition 
induced by the magnetic field at high fields. The magnitude 
of magnetic field in transition point depends on the density.                                                                                                       
 We can calculate the pressure of system from the total 
energy per particle, 

 

 
   

B

NBE
R

BP 














 /),((),( 2

2                                    (24) 

                                  
The    pressure   of    a    quasi-one-dimensional   interacting 

 
 
electron gas vs. density for different values of magnetic 
field is presented in Fig. 4. It shows that as the density 
increases, the pressure of system increases. However, the 
pressures at small magnetic fields are nearly identical.                                                                                                                                      
 Incompressibility κ of the system is calculated using the 
following formula, 
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In Fig. 5, the incompressibility vs. density has been given 
for several magnetic fields. We see that the 
incompressibility increases as the density increases. By 
increasing the magnetic field, the difference between the 
incompressibility of different magnetic fields increases.         

 
SUMMARY AND CONCLUSIONS 
 
 In this model, we have considered an interacting system 
of electrons in a uniform positive background, confined in a 
long cylindrical container with radius R = 10 nm. For this 
system, some properties are investigated in the presence of a 
uniform magnetic field using the Hartree-Fock formalism. 
Our calculations show that the energy of this system 
increases by increasing the density. With increasing the 
magnetic field, the system becomes more stable.  Based on 
the results, the spin-polarization parameter is almost zero 
for magnetic fields less than about 30 T, while for the 
magnetic fields greater than about 100 T, its magnitude 
grows rapidly. Our results also indicate a ferromagnetic 
phase transition at high magnetic fields. Our calculation 
shows that the pressure of system increases by increasing 
both density and magnetic field. This behavior is also 
observed for the incompressibility of the system. One can 
use these results to study nanowires [7-9].  
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Fig. 3. The spin-polarization parameter at the equilibrium state of system as a function of the magnetic 
          field at ρ = 0.45 (solid curve), 0.55 (dashed curve) and 0.65 nm-1 (dotted curve) for R = 10 nm. 

 

 
Fig. 4. χ/N|e| as function of the magnetic field at  ρ  = 0.45 (solid curve), 0.55 (dashed curve) and 

                     0.65 nm-1 (dotted curve) for R = 10 nm. 
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Fig. 5. The pressure of system as a function of density at B = 100 (solid curve), 400 (dashed-dotted-dotted  
            curve) and 800 T (short dashed curve) for R = 10 nm. 
 

 
Fig. 6. The incompressibility of system vs. density at B = 100 (solid curve), 400 (dashed curve) and  

                  800 T (dotted curve) for R = 10 nm. 
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