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       TRPV1 are ion channels capable of sensing different stimuli, integrating and translating them into signal language. TRPV1 antagonists 

have attracted much attention for the treatment of various diseases, due to their properties for the management of pain physiology and 

neurogenic inflammation such as anti-inflammatory, antineoplastic, and anti-nociceptive. Here, we performed a three-dimensional 

quantitative structure-activity relationship (3D-QSAR), molecular docking, and molecular dynamics (MD) simulation on a novel series of 

indole triazole derivatives as antagonists of TRPV1. The aim was to design novel potent TRPV1 antagonists with strong inhibitory activity. 

The significant 3D-QSAR models showed a good correlation between experimental and predicted activity. Comparative molecular similarity 

index analysis (CoMSIA) was used to construct the best 3D-QSAR model using the PLS method with correlative and predictive ability                                  

(R2 = 0.985. Q2 = 0.788. SEE = 0.105). Electrostatic, steric, and hydrophobic fields played an important role in the variation of biological 

activity of the three main components. Molecular Docking analysis was used to validate the 3D-QSAR methods and explain the binding site 

and interactions between the most active ligands and the receptor. Based on these results, a novel series of compounds were predicted. The 

pharmacokinetic properties of predicted compounds were analysed by drug-likeness and ADMET prediction. The best-docked compounds 

were studied by MD simulation to affirm the final candidate molecules' conformational feature to confirm their dynamic behavior and 

stability. 
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INTRODUCTION 
 

      The TRPV1 ion channel is a non-selective polymodal 

cellular receptor that allows Ca2+ ions to enter and receive 

exogenous stimuli such as capsaicin [1], resiniferatoxin, heat 

[2], acid [3], and mechanical stress [4], or endogenous stimuli 

such as the pro-inflammatory cytokine, anandamide, 

oxidative  metabolites,  and  linoleic  acid  [5]. TRPV1 is an 

important link between the extracellular environment and the 
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cellular response by integrating and translating these stimuli 

into the language of calcium-based signals [4].   

      Recent studies have focused on TRPV1 expressed on 

cells of the immune system and in several types of cancer, 

making it a potential target for treating different disorders 

such as inflammation, autoimmune diseases, and cancer [5]. 

Its activation [6] has been implicated in neural 

pathophysiology (chronic inflammatory pain, peripheral 

neuropathology) and non-neural diseases (cystitis and 

asthma) [7,8,5]. 

      TRPV1 antagonists have attracted a great deal of 

attention for the  treatment of  various  diseases,  specifically 
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those that are related to the management of pain physiology 
and neurogenic inflammation [9]. Various structural classes 
of TRPV antagonists have been discovered; some of which 
have reached clinical trials. however, due to undesirable side 

effects such as hyper-thermic and analgesic effect, there are 
challenges in drug development programs [10]. This was the 
basis of several recent studies showing that the complete 
blockade of all modes of TRPV1 activation can cause hyper-
thermia [11]. Indeed, many different molecular structures of 
antagonists selectively inhibit the capsaicin-induced TRPV1 

and partially block the TRPV1 activation [12,13]. Most 
studies of TRPV1 antagonists are searching for a different 
class of antagonists that can function in a particular mode of 
action by selective blocking of the capsaicin-induced 
response to alleviate  the hyper-thermic effect [11,9].  
      One of the strategies widely used in the medicinal 

chemistry programme is the chemical modification of natural 
compounds [14] to serve as ligands that can interact with a 
given receptor. Natural compounds such as rutaecaprine [15] 
and evodiamine [15] have shown several anti-inflammatory, 
antineoplastic, anti-diabetic and thermoregulatory biological 
effects, some of which are related to TRPV1 [15]. Moreover, 

voacangin, a natural product derived from tryptamine [2], is 
a selective stimulus antagonist that competitively inhibits the 
TRPV1 activated by capsaicin and heat [16]. These potent 
antagonists share the structural feature of 2.3.4 indole, which 
is the basic pharmacophore for TRPV1 inhibitory activity 
[17] [14]; it serves as ligands that can interact with a given 

receptor.  
      3D-QSAR is one of the computational approaches used 
in computer-aided drug design that aim to minimize the time 
and financial burden associated with the drug discovery 
process [18]. The research in the field of pharmaceutical 
industry has been developed considerably with modern 

pharmaceutical chemistry. 3D QSAR, molecular docking, 
and dynamic molecular simulation contribute efficiently and 
selectively in drug discovery. Molecular docking is designed 
to find the correct conformation of a ligand and its receptor 
[19,20,21]. The objective of this technique is to generate a 
complete set of conformations of the receptor complex and 

then to rank them according to their stability. The 
pharmacokinetic properties of the predicted compounds were 
analyzed by drug-likeness and ADMET prediction [22]. 
Molecular dynamics simulations [21] are one of the most 
versatile and applied computational techniques for  studying 

 
 
biological macromolecules, and are very useful for 
understanding the dynamic behaviour of proteins on different 
time scales [23].  

      In this paper, the 3D QSAR as well as molecular     

docking MD simulation, absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) prediction 

approaches [24,25] were applied on a novel series of 2.3.4.9-

tetrahydro-1H-pyrido [3.4-b] indole triazole derivatives as 

antagonists of TRPV1. The objective is to predict new 

TRPV1 antagonist inhibitors with high potency activity.  

 
MATERIALS AND METHODS  
 
Biological Data Set 
      The database used in this study is composed of 30 

derivatives of 2.3.4.9-tetrahydro-1H-pyrido [3.4-b] indole 

triazole, which extracted from the literature with their 

biological activity (IC50) [26]. The IC50 values (concentration 

needed to inhibit 50% of TRPV1 antagonist activity) were 

converted into pIC50 according to the formula: 

 

      pIC50 = -log(IC50 × 10-6) 

 

The dataset of compounds was devised in two groups: a 

training set of 24 molecules and a test set of 6 molecules. All 

compounds were visualized and optimized using 

ChemOffice and SYBYL-X 2.0 program package. The 

chemical structures and their corresponding biological data 

are presented in Table 1. 
 

3D-QSAR 
      Molecular alignment. The optimized structures and 
molecular calculations were performed using sybyl software 
[27]. The geometries of all compounds were optimized              
using a conjugate gradient procedure based on the                    
Tripos force field [28] with a convergence criterion of              

0.001 kcal mol-1 Å-1 and a maximum number of 5000 
iterations. Partial atomic charges were added using 
Gasteiger-Hücke charges subsequently [29,30]. The 
compound M10 was used as a template to align the training 
set using the database alignment option in SYBYL-X 2.0. 
Each analogue was aligned on the template by rotation and 

translation, in order to minimize the RMSD between the 
atoms  in  the  template.  The  alignment is  shown in Fig. 1. 
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 Table 1. Dataset of 2.3.4.9-Tetrahydro-1H-pyrido [3.4-b] Indole Triazole Derivatives with their Corresponding Experimental  
                Activity 

 
 

Compounds R 
IC50 

(µM) 
pIC50 Compounds R 

IC50 

(µM) 
pIC50 

M1T 
 

 
0.314 

 
6.503 

M16T 
 
 

 1.217 5.914 

M2 
 

2.156 5.666 M17 
 

1.195 5.922 

M3 
 

3.489 5.457 M18 
 

0.121 6.917 

M4  
 

0.243 6.614 M19 
 

0.788 6.103 

M5  
 
 

0.416 6.380 M20  1.674 5.776 

M6 
 

 

0.495 6.305 M21 
 

0.394 6.404 

M7 
 

 

0.232 6.634 M22 
 

0.341 6.467 

M8T 
 

0.385 6.414 M23 
 

1.543 5.811 

M9 
 

0.494 6.306 M24 
 

1.122 5.950 

M10 

 

0.075 7.125 M25  0.112 6.950 

 
M11T 

 

0.089 7.050 M26 
 

22.573 4.646 

 
M12 

 
0.204 6.690 M27 

 
19.416 4.711 

M13 
 

0.108 6.966 M28 
 

4.945 5.305 

M14 
 

2.531 5.596 M29T 
 

12.572 
 

4.900 
 

M15 
 

1.878 5.726 M30 
 

27.071 4.567 
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      CoMFA and CoMSIA analysis. Comparative 
Molecular Field Analysis (CoMFA) is an alignment-
dependent, ligand-based molecular field method [29] that 
helps to establish the quantitative relationship between 
molecular structures and their response properties [31]. The 
method focuses mainly on ligand properties, such as steric 
and electrostatic properties and the resulting favourable and 
unfavourable receptor-ligand interactions. As CoMFA is an 
alignment-dependent descriptor-based method, all aligned 
ligands are inserted into an energy grid and the energy is 
calculated by placing an appropriate probe at each point of 
the grid. The resulting energy calculated at each unit fraction 
corresponds to the electrostatic (Columbic) and steric (van 
der Waals) properties. These calculated values are used as 
descriptors for model development. The values of these 
descriptors are then correlated with the biological responses 
using a robust linear regression method such as partial least 
squares (PLS) [32]. The results of the PLS method are an 
important signal for identifying the favourable and 
unfavourable electrostatic and steric potential, and for its 
correlation with the biological responses. 
      Comparative Molecular Similarity Index Analysis 
(CoMSIA) is a ligand-based method. Alignment-dependent 
linear 3D-QSAR method is an improved version of CoMFA 
[33]. The two mentioned approaches are almost similar 
except for the molecular similarity, which is also calculated 
in the case of CoMSIA. To compensate this, Gaussian 
potentials are exploited in CoMSIA fields [33], which are 
much smoother than the CoMFA functions. The usual energy 
grid box is created and similar probes are positioned 
throughout the grid network. In addition, the solvent-
dependent molecular entropy (hydrophobicity) term is also 
included in CoMSIA. To analyse the property of a molecule 
in a data set, a common probe is placed and the similarity at 

 

 

 

 

 

 

 

 

 

 

 

 

 
each grid point is calculated. The calculation is mainly 
performed on steric, electrostatic, hydrophobic, hydrogen 
bond acceptors and hydrogen bond donors. The mentioned 

properties are calculated at regularly spaced grid points 
corresponding to a particular descriptor that are significantly 
correlated with the biological response. 
      PLS analysis. Partial Least Squares (PLS) [29] is an 
extension of multiple regression analysis, was used to 
correlate the CoMFA and CoMSIA fields with pIC50 values. 

The CoMFA and CoMSIA descriptors were used as 
independent variables. While pIC50 values were selected as 
dependant variable. The Column filtering was made at the 
default value of 2.0 kcal mol-1 in the cross-validation part and 
at the energy cut-off 30 kcal mol-1. 
      The cross-validation analysis was performed using the 

LOO (leave-one-out) method in which one molecule was 
excluded from the data set. The activity of the excluded 
molecule was then predicted using the model derived from 
the rest of the data set. The leave one out cross validation 
method is applied to determine the correlation coefficient Q2 
and the optimal number of components (ONC). 

 

      𝑄ଶ = 1 −
∑ (𝑌௜௢௕௦ − 𝑌௜ ௣௥௘ௗ)ଶ௧௥௔௜௡௜௡௚

௜ୀଵ

∑ (𝑌௜௢௕௦ − 𝑌ത )
ଶ௧௥௔௜௡௜௡௚

௜ୀଵ

 

 
Where Yi obs and Y i pred are the observed and predicted values 
of activity, respectively. Ȳ is the averaged value of the 
activity of the training set. 
      The best 3D QSAR model is determined based on the 
values of Q2 and R2, considering (Q2 > 0.5) and (R2 > 0.6) 
with low values of the standard error of estimation. The 

external validation was done using six molecules as a test set 
to estimate the predictive ability of the 3D-QSAR model 

a 

 
Fig. 1. Molecular alignment of data set compounds: (a) Alignment of training set compounds on the template (M10),  

                 (b) Molecular common core, and (c) Template. 
 

(a) (b) (c) 
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based on the value of R2 

test when (R2
test > 0.6). 

 

      𝑅ଶ
Test= 1 −

∑ (௒೔೚್ೞ(೟೐ೞ೟)ି௒೔ ೛ೝ೐೏(೟೐ೞ೟)మ೟೐ೞ೟
೔సభ

∑ (௒೔೚್ೞ(೟೐ೞ೟)ି௒ത೔೟ೝೌ೔೙೔೙೒)మ೟ೝೌ೔೙೔೙೒
೔సభ

 

Here, Yiobs(test) and Yipred(test) indicate observed and predicted 
values of the test set compounds, respectively. Ȳitraining 
indicates the mean activity value of the training set. 
 
Molecular Docking 
      Molecular docking [34] was applied to evaluate and study 

the interaction modes of a ligand derived from 2.3.4.9-
tetrahydro-1H-pyrido[3.4-b]indole triazole and a receptor 
protein. Practically, the crystal structure of the TRPV1 
protein in complex with capsaicin was obtained from the 
protein data bank (PDB code: 5IS0). Autodock software tools 
was used to determine the docking area by selecting a 

rectangular parallelepiped grid box of coordinates (x = 40,              
y = 74, z = 44 at 0.375) centred on the active site of protein. 
The visualisation of results was done using Discovery Studio 
2017 R2 software. The superposition between reference and 
redocked ligand is shown in Fig. 2. 
 
Molecular Dynamics (MD) Simulations  
      After performing the molecular docking study, the best-
scored complexes were then studied by MD simulations. All 
the calculations were performed using the GROMACS 
version (2020.1-1) [35]. The topology file of each compound 
was created by the CHARMM General Force Field 

(CGenFF) server [36], while the protein topology was created 
by 'pdb2gmx' script. The simulations were run using the 
CHARMM36 all-atom (March 2019) force field [37] in a 
triclinic box with a distance of 1.0 nm and a TIP3P water 
model solvated system [38]. The neutralization of the system 
was performed by adding sodium or chloride (Na+/Cl-) ions. 

The energy minimization of each system was set to 50,000 
steps using the steepest descent algorithm. Then, the 
production of MD simulation was run for 5 ns for each 
simulation at a temperature of 300 k, a pressure of 1 bar, and 
a time step of 2 fs. 
 
RESULT AND DISCUSSION  
 

3D-QSAR Model Analysis 
      The statistical results of CoMFA and CoMSIA models 

are presented in Table 2. 

 

 
Fig. 2. Superposition  of  the reference ligand on the TRPV1  

           pocket. The bleu stick represents the redocked ligand  

       and the green stick represents the reference ligand. 

 
 
 Table 2. Statistical   Analysis   of  CoMFA  and   CoMSIA  
                Models using PLS Method 
 
Parameters ComFA  ComSIA  
Q2  0.695 0.788 
R2 0.971 0.985 
ONC 5 4 

SEE 0.117 0.105 

R2 test 0.829 0.878 

F value 149.6 187.52 

Steric 0.473 0.105 

Electrostatic 0.527 0.408 

Hydrophobic * 0.487 
H-B Donor * * 

H-B Acceptor * * 

R2:  Non-cross-validated  correlation  coefficient; Q2: Cross-   
validated correlation coefficient; SEE: Standard error of the 
estimate;   N:   Optimum  number   of   components;   R2

test: 
External validation correlation coefficient; F: F-test value. 

 

 

      Considering the CoMFA model, the partial least square 

(PLS) regression gave a cross-validated correlation 

coefficient Q2 = 0.695 > 0.5 with an optimal number of 

components equal to 6, which shows that the model is reliable 

for the prediction of the pIC50 values. The non-validated PLS 

analysis gave a high correlation coefficient (R2) value of 

0.971, a low standard error estimate (SEE) of 0.117, and an 
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F-value of 149.6. The contribution of steric field was 0.473 
while that of electrostatic field was 0.527. The test set 
correlation coefficient had the value of R2

test = 0.829. The 
experimental and predicted pIC50 values of the training set 

compounds and the test set compounds and the residual 
values are shown in Table 3. 

      The graph showing the actual values of pIC50 as a 

function of the predicted values of the CoMFA model is 

shown in Fig. 3 in which almost all the points are located on 

the diagonal line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Correlation plot of CoMFA between the  

       experimental and predicted activities. 
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Table 3. Observed, Predicted Activity, and Residual Values Obtained by CoMFA and CoMSIA Models 
  
Compounds pIC50 CoMFA Residual CoMSIA Residual 

M1t 6.503 7.003 -0.5 6.154 0.349 
M2 5.666 5.751 -0.085 5.673 -0.007 
M3 5.457 5.377 0.08 5.505 -0.048 
M4 6.614 6.597 0.017 6.633 -0.019 
M5 6.38 6.504 -0.124 6.46 -0.08 
M6 6.305 6.238 0.067 6.146 0.159 
M7 6.634 6.714 -0.08 6.657 -0.023 
M8t 6.414 7.028 -0.614 6.463 -0.049 
M9t 6.306 6.996 -0.69 6.433 -0.127 
M10 7.125 7.158 -0.033 7.097 0.028 
M11t 7.05 6.97 0.08 6.618 0.432 
M12 6.69 6.602 0.088 6.664 0.026 
M13 6.966 6.779 0.187 6.723 0.243 
M14 5.596 5.556 0.04 5.616 -0.02 
M15 5.726 5.71 0.016 5.745 -0.019 
M16t 5.914 6.644 -0.73 6.087 -0.173 
M17 5.922 5.907 0.015 5.95 -0.028 
M18 6.917 6.975 -0.058 6.939 -0.022 
M19 6.103 6.09 0.013 6.009 0.094 
M20 5.776 5.751 0.025 5.781 -0.005 
M21 6.404 6.656 -0.252 6.661 -0.257 
M22 6.467 6.45 0.017 6.455 0.012 
M23 5.811 5.876 -0.065 5.82 -0.009 
M24 5.95 6.051 -0.101 5.937 0.013 
M25 6.95 6.722 0.228 6.975 -0.025 
M26 4.646 4.625 0.021 4.575 0.071 
M27 4.711 4.768 -0.057 4.796 -0.085 
M28 5.305 5.219 0.086 5.331 -0.026 
M29t 4.9 5.197 -0.297 4.762 0.138 
M30 4.567 4.612 -0.045 4.543 0.024 
tRepresents the test set compounds.  
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In the CoMSIA model, the statistical parameters were 

improved and it was obtained that the steric, electrostatic and 

hydrophobic fields influenced the antagonistic activity of 

TRPV1 in a significant way. It gave a cross-validated 

correlation coefficient of Q2 = 0.788 with an optimal 

component number of 4, a correlation coefficient R2 = 0.985, 

a low standard error estimate of 0.105, and an F-value of 

187.52. The relative contributions were 0.105, 0.408, and 

0.487 for the steric, electrostatic, and hydrophobic fields, 

respectively. The predictive correlation coefficient of the test 

set had a value of R2
test = 0.878. The experimental and 

predicted pIC50 values for the training set and test set data are 

shown in Table 2. The plot of the experimental activity versus 

the predicted pIC50 activity is shown in Fig. 4 with all points 

located on the diagonal line. 

 
Interpretation of CoMFA and CoMSIA Contours 
      The contour map visualized the results of the CoMFA and 

CoMSIA model and showed the regions of 3D space where 

molecular fields predominate, vary, and helps to identify sites 

where changes in molecular fields are strongly correlated 

with concurrent changes in biological activity. 

      CoMFA contour maps. The contour map of the CoMFA 

model molecular fields of the most active compound M10 is 

shown in Fig. 6. The steric field was represented by green 

contours, which highlighted the regions where  the  presence  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Correlation plot between the experimental and  

predicted activities of CoMSIA model. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Standardized coefficient Contour maps of CoMFA  

           analysis    of    the    TRPV1   antagonist    activity  

          (compound  M10)   (a)   steric  Contour maps;  (b)  

             electrostatic Contour maps. 
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Fig. 6. Standardized coefficient Contour maps of CoMSIA analysis of TRPV antagonist activity (compound M10):  

                      (a) steric Contour maps; (b) electrostatic Contour maps; c) Hydrophobic contour map. 

a b c 
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of the steric bulky group is favourable for enhancing the 

TRPV1 antagonist activity of the compounds. As shown in 

Fig. 5, the most dominant green contour is in the position of 

the substituent R suggesting that the existence of a bulky 

group in this region would be favourable. This explains, for 

example, the activity of compounds M10 (R = phenyl-CF3), 

M18 (R = phenyl-NO2), M15 (R = phenyl-Cl) has this order: 

pIC50 M10 = 7.125 ˃ pIC50 M18 = 6.917 ˃ pIC50 M5 = 6.380. 

The electrostatic field was represented by blue contours; this 

indicate the regions where the existence of an electro-

donating group in the R substituent, particularly in the                    

4-position of the substituted benzene, improved the activity. 

This further explains the increase in activity from M5, M18 

to M10 while the unfavourable regions of the electrostatic 

field are represented by red contours. 

      CoMSIA contour maps. In fact, different CoMSIA 

models were generated using multiple combined fields. A 

model including the steric electrostatic and hydrophobic  

fields gave a higher Q2 value than the CoMFA model 

showing that the hydrophobic field is an important factor in 

the antagonist activity of TRPV11. The contour map of the 

CoMSIA model visualised the partitioning of the steric, 

electrostatic and hydrophobic molecular fields on the 

molecular skeleton of the most active molecule (M10). The 

results are shown in Fig. 6. The steric field showed 10% of 

the global contribution of the molecular fields. The green 

contour shows that the presence of a bulky group at the                              

R-substituent, specifically on the phenyl, is linked to the 

triazole and the indole change improving the biological 

activity. This explains the notable activity of the M10 

compounds. M11, M2, M18, M19: pIC50 M10 = 7.125, 

pIC50. M11 = 6.917, pIC50 M2 = 6.380, pIC50 M18 = 

0.7125, pIC50 M19 = 6.917, while the yellow contour showed 

the unfavourable steric field regions. 

      The electrostatic field represents almost 41% of the total 

contribution of the molecular fields. The blue contour shows 

the regions where the presence of an electron donor or 

electron acceptor group influences the biological activity. 

The blue contour shows the favourable areas of the 

electrostatic field that is located specifically in the R-

substituent explaining the high activity of the compounds 

M10, M11, M2, M12 and M19. The red contour shows                    

the unfavourable regions of the electrostatic field.                       

The hydrophobic  field  represents  almost  half of  the  total  

 

 

contribution of the molecular fields included in the model 

(49%), showing the crucial role of the hydrophobic fields in 

the antagonistic activity of TRPV1. The contour map of the 

most active molecule (M10) shows a cyan contour, indicating 

the regions that favour the presence of a hydrophobic group 

located in the R substituent, particular in position 2 and 5 of 

the substituted benzene ring linked to the triazole. This 

explains the high activity of M10, M2, M12 and M19. In 

addition, there was an orange unfavourable contour related to 

the hydrophobic group in position 6 of the substituted 

benzene ring. The latter contour is linked to the triazole 

indicating the improved activity when a hydrophobic group 

is placed in position 2 compared to positions 3 and 4; pIC50 

M10 (R = phenyl-CF3 in position 2) = 7.7125, pIC50 M11    

(R = phenyl-CF3 in position 3) = 7.05, pIC50 M1 (R = phenyl-

CF3 in position 4) = 6.906. 
 
Design of New TRPV1 Antagonist  
      The design of new TRPV1 antagonists is based on the 

interactions generated by the 3D QSAR model and molecular 

docking to give a more potent and improved activity. Based 

on 3D-QSAR, we found that steric, electrostatic, and 

hydrophobic fields play important roles in the activities of the 

studied compounds. Indeed, we propose three new TRPV1 

antagonists based on SAR information from the 3D QSAR 

study  that are shown in Fig. 7. The  chemical  structure  and  

 

 

  

 

Fig. 7. Structure-activity relationship (SAR) information  

              obtained from the 3D-QSAR study. 
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predicted activity values of the new compounds are presented 

in Table 4. 

      The three proposed compounds showed good predicted 

activities compared to the most potent antagonist. To ensure 

the designed compounds are good antagonists, we performed 

molecular docking studies on the proposed compounds, 

which are shown in Table 4. 

 

Molecular Docking Results 
      The docking study was performed between the (PDB ID: 
5IS0) receptor and the ligands P1, P2 and P3. All compounds 

were docked by occupying the active site of the target 

protein.   The  binding   affinity  values  of  the  most  active  

 

 

 

compound and the proposed compounds are shown in                   

Table 4. According to our results, the three ligands had a 

higher binding energy than the most potent TRPV1 

antagonist did. These complexes were visualised and 

analysed by the Discovery Studio 2017 R2 software that 

areshown in Figs. 8, 9, 10 and 11. 

      The difference between the binding affinity values of the 

complexes is proportional to the stability of the protein-

ligand interaction; all tested ligands have the potential to 

establish strong and stable complexes with the target protein 

[21]. The results of the binding site interactions of compound 

M10 and TRPV1 antagonist receptor (PDB ID: 5IS0) is 

presented  in  Fig. 8.  As   shown,   compound  M10  formed  

 

  Table 4. The Binding Energy Values of the most Active Compound and the Proposed Compounds 

 

Compounds  
Binding  

(kcal mol-1) 
pIC50 

 
M10 

 

-8.95 7.125 

 
P1 

 

-9.02 7.126 

 
P2 

 

-9.32 7.370 

 
P3 

 

-9.27 7.364 
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four hydrogen bonds with GLU C: 513, TYR C: 495,                      

TYR C: 554, and SER C: 510. It also had three hydrophobic 

interactions with ARG C: 491, ILE C: 703, SER: 501, and 

three electrostatic interactions with ARG C: 557, ARGC: 

491, GLU C 513. The most active predicted molecule P2 

formed  more  hydrogen  bonds  than  the  M10,  P1  and  P3  

 

 

compounds. P2 formed seven hydrogen bonds with TYR C: 

511, ALA C: 566, LEU C: 553, THR C: 556 ARG C: 557, 

THR C: 550, and TYR C: 554. It also had three hydrophobic 

interactions with ILE C: 573, ALA C: 566, and LEU C: 553, 

and an electrostatic interaction with GLU C: 570. This type 

of   interaction  are  signs  of  ligand  docking  in  favourable 

 
Fig. 8. Molecular docking of antagonist M10 with (PDB ID: 5IS0) protein. (a) Binding site interactions of 2D view.  

                  (b) Hydrogen binding conformation of 3D view. 

 

 
Fig. 9. Molecular docking of antagonist P1 with (PDB ID: 5IS0) protein. (a) Binding site interactions of 2D view.  

                    (b) Hydrogen binding conformation of 3D view. 

 

(b) 
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conformations [39] and contributes to protein stability [24]; 

however, hydrophobic interactions have the main 

 

 

 

contributors to stability. Electrostatic interactions are 

generally associated with binding affinity to the structure as 

well as biological reactivity of the proteins and nucleic acids 

[40], showing that P2 could have these different interactions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predicted compounds P1 and P3 also formed hydrogen 

bonds, hydrophobic interactions, and electrostatic 

interactions with the receptor. The results are shown in                

Table 5. 

 
Fig. 10. Molecular docking of antagonist P2 with (PDB ID: 5IS0) protein. (a) Binding site interactions of 2D view.  

                    (b) Hydrogen binding conformation of 3D view. 

 
Fig. 11. Molecular docking of antagonist P3with (PDB ID: 5IS0) protein.  (a) Binding site   interactions of 2D view. (b) 

                Hydrogen binding conformation of 3D view. 

 

(b) 
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Molecular Dynamics Simulation 
     In order to validate the molecular docking results affirm 

the stability of the docked compounds in the (PDB ID: 

5IS0)binding pocket, compounds M10 and P1 were studied 

by MD simulation. All systems were assigned to a 5 ns 

timescale simulation. The root mean square deviation 

(RMSD) of the 5IS0_M10 and 5IS0_P2 complexes is given 

in Fig. 12 and 13. It was obtained that the mean value of the 

RMSD of the 5IS0_M10 and 5IS0_P2 systems were 0.19 nm 

and 0.11 nm, respectively. These results indicated that the 

5IS0_P2 complex was more stable than the 5IS0_M10 

complex during the MD simulation. These results are in 

agreement with those obtained by 3D-QSAR and molecular 

docking. 

 

ADME/T Prediction  
      Before the experiment, the pharmacokinetic properties of 

the predicted new compounds must be tested [41]. Here, the 

pkCSM [42] and SwissADMET [22] web servers were used 

to perform ADMET (absorption, distribution, metabolism, 

excretion, and toxicity). The results are presented in Table 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12. Molecular dynamics  simulations. RMSD of  

             backbone over the 5 ns of MD simulation at  

                    300 K and 1 bar. 

 

 

As shown in Table 6, all predicted compounds exhibited 

moderate   ADMET   parameters.   High   values  of   human  

  Table 5. Interactions of Amino acid Residues with Ligands at Receptor Sites 

 

Ligands 

 

Hydrogen-

binding 

interaction 

Hydrophobic 

interaction 

Electrostatic 

interaction 

Ligands 

 

Hydrogen-

binding 

interaction 

Hydrophobic 

interaction 

Electrostatic 

interaction 

 

P10 

 

GLU C: 513 

TYR C: 495  

TYR C: 554  

SER C: 510 

 

 

  ARG C: 491 

ILE C: 703 

SER C: 501 

 

ARG C: 557 

ARG C: 491 

GLU C: 513 

P2 

 

TYR C: 511 

ALA C: 566  

LEU C: 553 

THR C: 556   

ARG C: 557 

THR C: 550  

TYR C: 554 

 

 

ILE C: 573 

ALA C: 566 

LEU C: 553 

GLU C: 570 

 

P1 

 

GLU E: 700 

ASP E: 509 

TYR E: 511 

ARG E: 557 

SER E: 512 

GLU E: 513 

 

ILE E: 703 

PHE E: 488 

 

ARG E: 491 

ARG E: 557 

GLU E: 513 

P3 

 

ARG E: 557 

THR E: 556 

LEU E: 553 

TYR E: 511 

THR E: 550 

 

LEU E: 515 

ALA E: 566 

ILE E: 589 

 

GLU E: 570  

MET E: 547 
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Fig. 13. RMSF of  residues during MD simulation. In all  

             figures, the blue color represents  the 5IS0_M10  

                complex  and   the  violet   color  represents  the  

                5IS0_P2 complex. 
 

 

intestinal absorption (HIA > 30%) show that the predicted 

compounds passed through the intestinal membrane in a 

moderate way. High value of Caco-2 permeability (>90%)                     

of compound P1 revealed that this compound had a high 

Caco-2 permeability. In summary, it can be concluded                        

that the predicted compounds are likely to be orally active.     

In   addition,  the   synthetic   accessibility  of  all  predicted  

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

compounds was close to 1, which means that these 

compounds are very easy to synthesize. 
 
CONCLUSIONS 
  

      This research introduces new TRPV1 antagonist 

compounds from a series of compounds by application of 3D-

QSAR studies, including CoMFA and CoMSIA methods. 

The results of the CoMFA and CoMSIA studies using PLS 

method showed that the resulting values of Q2, R2 test and R2 

are very high for all models. The chemical interactions of the 

binding site between the ligands and the target protein were 

studied using molecular docking. the docking results were in 

agreement with the 3D-QSAR studies. Based on these 

studies, three new compounds (P1-3) were predicted using 

the CoMSIA method. The results of the docking analysis 

showed that, compared to the most potent antagonist in the 

dataset (compound M10), the predicted compounds had a 

high degree of stability in the protein-binding pocket. The 

MD simulation results also indicated that compound P2 was 

more stable in the receptor-binding pocket during the 5 ns 

simulation time. 
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   Table 6. ADME/T Analysis and Synthetic Accessibility of Predicted Compounds 
 

C
om

pounds 

Absorption 
Distributi

on 
Metabolism Excretion Toxicity 

Synthetic 

W
ater 

solubility 

C
aco2 

perm
eabilit

Intestinal 

absorption 

B
lood 

B
rain 

CYP T
otal 

C
learance 

A
M

E
S 

toxicity 

M
ax. 

tolerated 

2D6 3A4 1A2 2C19 2C9 2D6 3A4  

Substrate Inhibitor 

 
Numeric 

(log 

M) 

Numeric 

(logPapp 

in 10-6 

cm s-1) 

Numeric 

(% 

Absorbed 

Numeric 

(logBB) 
Categorical (Yes/No) 

 

Numeric 

(log 

ml/min/kg 

Categorical 

(Yes/No) 

Numeric 

(log 

mg/kg/day 

P1 -3.59 -0.043 81.58 -1.51 Yes Yes Yes No No No Yes 0.90 YES 0.40 3.25 

P2 -3.60 -0.04 81.31 -1.53 Yes Yes Yes No No No Yes 0.86 YES 0.40 3.32 

P3 -3.81 0.98 91 -1.46 No Yes Yes Yes Yes No Yes 0.60 NO 0.09 3.25 

M10 -4.28 0.84 92 0.36 Yes Yes Yes No No Yes No 0.81 NO 0.04 3.15 
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