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      To assess the effect of missense variants and the degree of pathogenicity of each nsSNP on the function, structure, and stability of the 

glucokinase protein (GCK), several algorithms were utilized including PHD-SNP, PROVEAN, SNPs&GO, PolyPhen 2.0, SIFT, MutPred, 

I-Mutant, MUpro, Consurf, and STRING. We have evaluated the flexibility levels of the residues in GCK protein using the PredFlexy server 

and then we used the DynOmics server to study the molecular dynamics and understand the correlated communications between the residues. 

Towards the end, TM-align and the PyMol program were used to analyze the topology and structural similarity between the native model 

and the generated mutants. In total, seven out of eight nsSNPs were found to be the most damaging variants and to exhibit a deleterious effect 

on the structure of the GCK protein, and probably on its function. This in silico study gives information on functional polymorphisms that 

impact the structure, stability, and function of the GCK protein, and consequently susceptibility to Gestational Diabetes. 
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INTRODUCTION 
 
      Gestational diabetes (GD) is one of the most common 
complications of pregnancy and is a widespread condition 

with a prevalence that has increased by more than 30% in a 
number of nations, which has prompted researchers to take a 
major interest in it.  
      GD can occur as a result of increased levels of blood 
hormones whose function is antagonistic to insulin, resulting 
in insulin resistance. The other case is the occurrence of GD 

due to increased insulin resistance during pregnancy 
stimulated by a genetic predisposition to impaired islet β-cell 
function [1]. 
      Several genes are involved essentially IRS-1, TCF7L2, 
KCNJ11, PPARgamma, and GCK, the latter having been                
the  target of several research teams either by bioinformatics 
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approaches or by experimental studies. See that glucokinase 
is the essential enzyme in the regulation of glucose 
homeostasis [2,3].  

      The GLUT family of glucose transporters is functionally 
dependent on hexokinase (HK) phosphorylation of 
intracellular glucose to sustain the glucose gradient 
throughout the plasma membrane. The first enzyme of the 
glycolytic pathway is hexokinase present in mammalian 
cells. This enzyme engages glucose towards catabolism by 

catalyzing its phosphorylation into glucose 6-phosphate with 
ATP as the phosphate donor [4].  
      Therefore, human glucose metabolism is closely 
regulated by the activity of glucokinase (GCK), a 12-exon 
gene located on 7p15.3-p15.1 that is responsible for the 
expression of glucokinase (a monomeric protein of 465 

amino acids and weighing approximately 50 kD). 
      The initial and limiting step of glycolysis in the liver and 
pancreas is catalyzed by Glucokinase protein which catalyzes 
the   ATP-dependent   conversion   of   glucose   to   glucose                
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6-phosphate [5,6]. Glucokinase is a protein that is mainly 
related to disorders of carbohydrate metabolism. This 
explains its involvement in the occurrence of several 
pathologies in this sense. A mutation in the GCK gene 

responsible for the synthesis of the glucokinase protein is 
associated with the development of several pathologies, 
including neonatal hypoglycemia in infants and children, 
maturity-onset diabetes 2 in young people, also called Mody, 
as well as gestational diabetes, which is the subject of this 
study and which has been demonstrated by several teams 

[7,8]. M. Capuano et al. (2012) validated a study on the 
association between the GCK gene and Type 2 Maturity 
Onset Diabetes of the Young (MODY2) the study which was 
composed of 3 parts, experimental on 66 diabetic children 
from southern Italy suspected of MODY2, statistical and a 
small bioinformatics part to which they revealed six new 

mutations of GCK and they elucidated the structure function 
link between human GCK alteration and MODY2 [9]. The 
subject that was treated also by S. Costantini et al. (2014) 
who showed the involvement of certain heterozygous 
mutations with loss of function in the gene of GCK in the 
provocation of diabetes to maturity of the subtype GCK of 

young people [10]. In the same context, a study was done to 
show the association between gestational diabetes and 
glucokinase by Samreen Siddiqui et al. (2018) who worked 
on a sample of 154 women from northern India which they 
associated with 3 predictive tools of pathogenicity to which 
they did not find an association between the 2 parameters, 

The result was inconsistent with the case-control study by 
Shaat and his team that reported the involvement of GCK 
gene variants in increasing the risk of gestational diabetes in 
Scandinavian women [11,12]. An nsSNP is a mutation in 
which one amino acid is replaced by another, which can lead 
to the generation of a mutant protein with functional and 

structural alterations that can cause disease, making the 
identification of the most deleterious nsSNPs resulting in 
particular effects in humans a real challenge for researchers. 
      This is feasible today, through in silico approaches that 
are fast, inexpensive, and above all reliable and with which 
deleterious nsSNPs in a target gene can be predicted and 

identified.  
      For this purpose, our workflow was based on the 
prediction of the most deleterious non-synonymous 
nucleotide polymorphisms (nsSNPs) in the GCK gene that is 
associated with gestational diabetes. Using different tools, we 

 
 
examined the functional and structural effects of the nsSNPs 
to investigate their potentially deleterious effects on the gene. 
Alternatively, of the confirmation by biological experiment, 
the study attempts to give an effective method for the fast                  

and cost-effective targeting of deleterious nsSNPs that                    
will be candidates for subsequent functional verification 
experiments. 
      This type of approach will help us both deepen our 
understanding of how these deleterious mutations may alter 
protein function and identify important gaps that need to be 

filled and experimentally proven in future studies. 
 
MATERIALS AND METHODS 
 
Datasets 
      The datasets of the corresponding human GCK gene were 
retrieved after their identification (in November 2020) from 

the Ensembl database (http://www.ensembl.org/) and then 
focused on the nsSNPs which were subjected to an in-depth 
study to detect their effects on the protein. 
      The amino acid sequence was extracted from the Uniprot 
database and the GCK gene and protein information                      
were obtained from the OMIM database 

(https://www.omim.org/entry/138079); 
(https://www.uniprot.org/uniprot/Q9BYF1.fasta). 
      The strategy followed to select and study nsSNPs with 
structural and functional impact is presented in the figure 
below (Fig. 1). 

 
Fig. 1. Graphical illustration of the steps taken to explore the 

most plausible nsSNPs in the GCK gene. 
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Analysis of the Most Deleterious nsSNPs to 
the GCK Gene by In Silico Tools 
      In order to achieve our objective and detect the 

deleterious effect of GCK protein nsSNPs,  we used  several  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in silico tools to predict the pathogenicity of the nsSNPs 

tested such as PROVEAN, SNPs&GO, SIFT, PHD-SNP, and 

PolyPhen 2.0 as shown in Table 1, or to reveal their 

functional effect on the protein  such as  MutPred, I-Mutant,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Tools Used to Identify the most Pathogenic and Damaging nsSNPs 

 

Tool Description Availability Ref. 

SNPs&GO SNPs&GO is a tool to determine the presence or absence of a 

mutation/disease relationship by exploiting the functional 

annotation of the protein, seeing that it brings together protein 

sequence-derived information, evolutionary information and 

function as encoded in Gene Ontology terms. 

Probability values > 0.5 for each variant is predicted as an 

nsSNP disease.  

https://snps-

and-

go.biocomp.un

ibo.it/snps-

and-go/ 

[13] 

SIFT (sorting 

intolerant from 

tolerant) 

SIFT is an algorithm that uses sequence homology to calculate 

the probability that substitution will result in an adverse effect 

on protein function. It uses a query protein that is searched in a 

protein database to obtain homologous sequences with which it 

performs an alignment and based on the amino acid composition 

a score that it calculates. 

The SIFT score varies between 0 and 1, and if it is between 0 

and 0.05 it should affect the protein function. 

https://sift.bii.

a-star.edu.sg 

 

 

[14] 

Polymorphism 

Phenotyping v2 

(PolyPhen-2) 

An automated tool that predicts the effect of substitution on a 

given protein by generating output elements that classify 

nsSNPs into benign, possibly damaging, and probably 

damaging based on phylogenetic and structural features of the 

sequence as input elements. The server also outputs a count 

score that is the basis for these predictions, where score 1 is 

considered the most damaging. 

http://genetics.

bwh.harvard.e

du/pph2/ 

[15] 

PROVEAN The server gives a prediction for a protein sequence, accepts as 

input a protein sequence and amino acid combinations, 

performs a BLAST search to find support sequences that have 

already been calculated and produce PROVEAN scores. When 

the final score is less than -2.5, the server predicts that the 

variant is harmful, and when it is greater than that value, it 

predicts it as neutral. 

http://provean.

jcvi.org/index.

php 

[16] 

PhD-SNP (Predictor 

of human Deleterious 

Single Nucleotide Poly

morphisms) 

It is an online server, used to inform about the deleterious or 

neutral character of the SNP requires as input element the 

protein sequence, the position, and the new residue. 

https://snps.bi

ofold.org/phd-

snp/pages/PhD

-

SNP_HelpOld

.html 

[17] 
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MUpro, Consurf, STRING in Table 2, as well as others 

aiming to demonstrate their structural effect on the GCK 

protein which are Swiss-Model, QMEAN, Verify 3D, Errat, 

Ramachandran plot, TM-align, PyMol, DynOmics ENM, 

andPredyflexy in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      To do this, First, we used several approaches to predict 

pathogenicity and deletion of GCK gene nsSNPs through 

different web servers, namely PROVEAN, SNPs&GO, SIFT, 

PHD-SNP, and PolyPhen 2.0, which generated results 

classified into two categories, "neutral" or "deleterious". 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 2. Tools Used to Study the Conservation and Stability of the Protein 
 

Tool Description Availability Ref. 

MutPred a tool that generates molecular mechanisms potentially responsible for 

disease and returns interpretable pathogenicity score distributions, 

which is used to demonstrate the impact of variants on protein 

structure and function that can be used to guide experimental studies 

of phenotype-altering variants. 

The output emits a p-value (where the p-value is less than 0.05 and the 

p-value is greater than 0.01) were considered as reliable and very 

reliable hypotheses respectively. 

http://mutpre

d.mutdb.org 

 

 

[18] 

I-Mutant 

 

 

In order to verify the stability of the target protein, I-Mutant 2.0 was 

used, which is a web server based on a support vector machine that 

helps to detect any change in stability during a mutation of the single-

point protein from the sequence information. The tool predicts the 

Reliability Index (RI) of results ranging from 0 to 10, with 10 being 

the highest reliability, as well as a value for predicting energy change 

(DDG). 

https://foldin

g.biofold.org/

i-mutant/i-

mutant2. 

 

[19] 

 

MUpro To ensure the result provided by I-Mutant, we used MUpro, a server 

that can forecast the modifications in protein stability for single amino 

acid mutations, it is based on both; neural networks and support vector 

machines, that each will provide us with a different result that are the 

value of energy change (DDG) and the sign of energy change with a 

score to measure the confidence of prediction that varies between -1 

and 1 

http://mupro.

proteomics.ic

s.uci.edu 

 

 

[20] 

Consurf The ConSurf server is a bioinformatics tool used to estimate the rate 

of evolution of positions of an amino acid in a protein based on 

phylogenetic relationships between homologous sequences. This 

technique allows to determine the functional sections of a protein by 

analyzing the degree of this conservation which varies from 1 to 9. 

Thus, degree 9 corresponds to the most conserved residue, the lower 

the score, the weaker the conservation. 

https://consur

f.tau.ac.il 

 

 

 

[21] 

STRING Then, the STRING web server was used to build a network including 

physical and functional interactions of a target protein. 

The basic unit of this server is the functional association, so it 

highlights the proteins that participate in a given biological function. 

https://string-

db.org/ 

 

[22] 
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Table 3. The Tools Used to Verify the Quality of the 3D Structures of the Models that were Used to Identify Structural 
Modifications 
 

Tool Description Availability Ref. 
Swiss-
Model 

SWISS-MODEL workspace is a web server dedicated to the modeling of 
protein structure homology; it uses a database deduced from the PBB. This 
will allow a model generation based on sequences or templates. The models 
are annotated with information on the experimental method used, 
resolution, mean strength potential to allow rapid retrieval of relevant 
structural information when selecting the model. 

http://swissmodel.exp
asy.org/workspace/ 

 

[23] 
 
 

QMEAN which stands for Qualitative Model Energy Analysis with its clustering 
method, provides a z-score to evaluate the quality of the model by 
comparing it to reference structures of the same size present in the PDB and 
solved by experimental techniques. 

https://swissmodel.ex
pasy.org/qmean/help 

 

[24] 
 
 

Verify 3D As we used Verify 3D tool to determine the compatibility of the amino acid 
sequence with the 3D structure of the protein, 65% of the amino acids 
should have a score higher than 0.2 to validate the model according to this 
software. 

http://services.mbi.ucl
a.edu/Verify_3D/ 

[25] 

ERRAT Errat software was also used to examine the statistics of non-bonded 
interactions between different types of atoms so that it could then plot the 
values of the error function versus the position of residues. 

http://services.mbi.ucl
a.edu/ERRAT/ 

[26] 

Ramachan
dran plot 

For the Ramachandran plot, it gives an idea of the conformation of a 
protein. The ideal result for this software is to have more than 90% of the 
residues in the central regions see that the proportion of residues in the 
central regions is one of the best guides of stereochemical quality. 

http://services. 
mbi.ucla.edu/SAVES/
Ramachandran/ 

[27] 
 
 

TM-align As we used the TM-align server to compare the 2 structures of mutated and 
native proteins, see that this tool allows the superposition of 2 structures 
based on a residual-residual alignment and on the calculation of a modeling 
score (TM-score) and value (RMSD). The output elements are a TM-score 
that must be between 0 and 1, of which 1 designates a perfect match 
between the structures as well as an RMSD value that when it is high it 
implies a greater variation between the native and mutated structures. 

https://zhanglab.ccmb.
med.umich.edu/TM-
align/ 

 

[28] 

PyMol is a tool that provides a high-quality interface and requires a PDB file for 
the purpose of visualizing, analyzing, and manipulating the predictions of 
residues and evolutionary sites in protein structures 

https://pymol.org 
 

[29] 

DynOmics 
ENM 
 

is a server that enables for the efficient generation of information on 
collective dynamics. This tool gathers three components: an evaluation of 
the collective movements of biomolecules as well as that of key sites 
involved in chemical processes, although resolution exchanges between the 
complete atomic and CG representations. 

http://enm.pitt.edu/ 
 
 

[30] 

Predyflexy The server is used to provide a prediction of both the flexibility of the 
proteins and the local structure of the proteins, which is determined using 
the normalized B-factors and RMSF, the latter calculated by the 
GROMACS tool after superimposing each snapshot structure on the initial 
conformation. It gives a result in two forms: a graph that illustrates the 
sequence according to the prediction of flexibility (which varies from 0 to 
2 for highly flexible residue) and the confidence index (which varies from 
1 to 19 and its increase reflects the accuracy of the prediction) and a table 
that includes the same information on each amino acid of the sequence of a 
target protein. 

https://www.dsimb.ins
erm.fr/dsimb_tools/pr
edyflexy/index.html 
 
 

[31] 
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Prediction of Functional and Structural Changes 
      To predict functional changes, the Mutpred tool was used 

to identify molecular mechanisms potentially responsible for 

gestational diabetes. I-Mutant 2.0 and MUpro were utilized 

to discover the effects of high-risk nsSNPs on the stability of 

the protein upon amino acid substitution by examining the 

free energy. The ConSurf web server was used to evaluate 

the rate of amino acid position evolution in the GCK protein 

based on phylogenetic relationships between homologous 

sequences and the STRING tool was used to construct a 

protein-protein network including physical and functional 

interactions of a target protein. 

 
Validation of the Generated Models 
      To predict structural changes we used the Swiss-Model 

algorithm, to create 3D structures for the native protein and 

the mutant which were validated using the following 

verification tools (Ramachandran plot, Verify 3D, Errat, and 

QMEAN) and then we used the TM-align Server to compare 

the structures of the native protein with the mutants by 

superimposing the structures based on the residual-residual 

alignment, on the calculation of the modeling score (TM 

score) and the root mean square deviation (RMSD). 

      The root mean square fluctuation (RMSF) was calculated 

using the PredyFlexy server to predict the dynamic class of 

an amino acid residue (flexible, intermediate, rigid), and also 

to estimate whether each residue is likely to generate 

conformational changes within the protein. 

      And towards the end, we used the DynOmics ENM server 

to provide a prediction of both protein flexibility and local 

protein structure, which is determined using normalized B-

factors and RMSF, the latter being calculated by the 

GROMACS software after superimposing each 

instantaneous structure on the initial conformation. 

 

Calculation of the Cumulative Score of nsSNPs  
      In order to give a sufficiently reliable prediction, we 

calculated the cumulative score using the Sum Excel 

function, which was based on the aggregation of the 

prediction results of all tools used for each nsSNP (PHD-

SNP, PROVEAN, SIFT, SNPs&GO, PolyPhen 2.0, I-

Mutant, Mutpred, MUpro, ConSurf, and TM-align) [32]. 

Subsequently, we set a restricted cumulative score value 

(which is 8/10 software that showed a positive prediction 1)  

 

 

when the results of the ten software tools were combined, 

each substitution predicted by at least 8 tools as deleterious 

was classified to be high-risk pathogenic for GCK. This 

makes this step a crucial part of predicting the most 

deleterious nsSNPs based on the results of all the servers we 

used to increase the reliability of our results. 

 
RESULTS  
 

Dataset 
      We started the work with preliminary research on 

the GCK gene, in which we were interested in the Homo 

sapiens data, in this research 80413 SNPs were detected in 

totality among which we find 1572 in the 3'UTR region, 618 

in the 5'UTR region, 52295 in the intron region, 1459 

synonymous variants and 2783 nsSNPs. Only the last 

category of nsSNPs have been investigated during this study 

and examined for further analysis, as shown in the graphical 

representation in Fig. 2. 

      In total, 12 different web servers and bioinformatics 

programs were used to evaluate the effects of the selected 

nsSNPs. In this study, the aim is to rely on a set of algorithms 

that perform complementary tasks to increase the reliability 

of the results generated.  
 

 

 
Fig. 2 The diagram represents the percentage distribution of 

SNPs; nsSNPs, 3'UTR region, 5'UTR region, intron region, 

and other SNP types in the GCK gene. 
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      In order to distinguish the functional effects of the 

mutation on the protein we used the following algorithms: 

PROVEAN, SNPs&GO, SIFT, PHD-SNP, and PolyPhen 

2.0, then the tools I. Mutant and MUpro tools were used to 

determine the effects of mutations on the stability of the GCK 

protein and then Consurf, MutPred, Swiss-Model, and 

STRING tools were used to determine the impact of 

mutations on the functional and structural level and also to 

determine the interactions between proteins 

 
Identification of Damaging nsSNPs 
      To extrapolate deleterious nsSNPs that can significantly 

alter the structure or function of the GCK protein, five 

servers namely PROVEAN, SNPs&GO, SIFT, PHD SNP, 

and PolyPhen were used. 

      And since each of these algorithms uses different 

parameters to evaluate nsSNPs as deleterious or neutral, we 

set a score of 4 tools out of 5 to determine the pathogenicity 

of an nsSNP, out of 8 nsSNPs, 7 were predicted to be 

deleterious nsSNPs in all computational algorithms, the 

result of our analysis in has been summarized in Table 4 

below. 

 

Characterization of Protein Stability Changed by 
Mutations 
      A stability analysis was performed on the 7 nsSNPs that 

were predicted to be deleted at high risk to detect changes in 

GCK stability in terms of Reliability Index (RI) and a DDG 

value,  this  was  tested  by MUpro and I-Mutant. The  result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

revealed that the 7 deleterious nsSNPs caused a decrease in 

protein stability as Table 5 indicates. 

 

Analysis of the Evolutionary Conservation of the 
GCK Protein 
      An analysis by the Consurf web server was carried out to 

predict the conservation regions located in the GCK protein 

to identify high-risk structural and functional residues of the 

protein using evolutionary conservation and accessibility to 

solvents, see that mutations located in highly conserved 

regions can directly affect the protein function of this gene. 

The analysis revealed that the residues namely I130T, 

C371F, V181M, V182M are moderately conserved and 

buried, while the amino acid substitution namely E237k is 

moderately conserved and exposed, and for E236K and 

T206P they are exposed and highly conserved. The results of 

this analysis are presented in Fig. 3 and the details on the 

conservation score and prediction are in Table 6. 

 
Prediction of Molecular Change of Substitutions by 
MutPred 
      MutPred server was developed to classify an amino acid 

substitution as either deleterious or neutral, the prediction is 

based on changes at the atomic and molecular level of the 

substitution related to the disease, which means stability, 

accessibility to solvents, transmembrane helix, catalytic 

residues, and intrinsic disorder.  MutPred calculates the G- 

score to predict the probability of substitution to be 

deleterious which is supposed to be 0.5 or more, an analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 4. Screening for Possible Deleterious nsSNPs GCK Gene Using Different In Silico Tools 

 

RS Substitution 

 

SIFT Score PolyPhen 

2.0 

Score SNP& 

Go 

Score PHD-

SNP 

Score PROVEAN Score 

rs1036483919 I 130T Del 0 Pb.D 0.571 Dis 10 N 5 Del -3.79 

rs587780345 V181M Del 0 Pro.D 0.998 Dis 10 N 3 Del -2.856 

rs587780345 V182M Del 0 Pro.D 0.999 Dis 10 N 4 Del -2.748 

rs587780346 T206P Del 0 Pro.D 0.999 Dis 10 Dis 8 Del -5.864 

rs587780347 E236K Del 0.03 Pb.D 0.451 Dis 10 Dis 9 Del -3.865 

rs587780347 E237K Del 0.03 Pro.D 0.991 Dis 9 Dis 2 Del -3.217 

rs193922331 S263P Del 0 B 0.044 Dis 10 Dis 4 N -1.728 

rs587780343 C371F Del 0 Pro.D 0.999 Dis 10 Dis 7 Del -10.088 

  Del = Deleterious; Pb.D = Possibly damaging; Pro.D = Probably damaging; B = Benign; Dis = Disease; N = Neutral. 
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Fig. 3. Analysis of amino acid residues conserved during the evolution of GCK human gene by ConSurf whose color-coding 

bar indicates the conservation score. 

 

Table 5. Validation Result of Protein Stability Change by Using I-Mutant 2.0 and MUpro 
 

I-Mutant MUpro 

RS Substitution Stability RI DDG Stability DeltaG 

rs1036483919 I130T D.S 4 -0.43 D.S -1.911 

rs587780345 V181M D.S 1 0.17 D.S -0.62 

rs587780345 V182M D.S 6 -0.16 D.S -0.361 

rs587780346 T206P D.S 5 -2.72 D.S -1.54 

rs587780347 E236K D.S 9 -2.73 D.S -0.84 

rs587780347 E237K D.S 6 -1.49 D.S -1.028 

rs193922331 S263P D.S 3 -0.14 D.S -0.46 

rs587780343 C371F D.S 9 -1.96 D.S -0.860 

DDG = Free energy change value; RI = Reliability index; Decrease stability = D.S. 
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V ariable A verage C onserved

e  - An exposed residue according to the neural-network algorithm.

b  - A buried residue according to the neural-network algorithm.

f  - A predicted functional residue (highly conserved and exposed).

s  - A predicted structural residue (highly conserved and buried).

X  - Insufficient data - the calculation for this site was
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Table 6. Evolutionary Conservancy of Amino Acids in GCK Analyzed by Consurf 
 
nsSNP Id Residue Conservation score Prediction 

rs1036483919 I130T 6 Buried residue 

rs587780345 V181M 7 Buried residue 

rs587780345 V182M 8 Buried residue 

rs587780346 T206P 9 Highly conserved and exposed  

rs587780347 E236K 9 Highly conserved and exposed  

rs587780347 E237K 5 Buried residue 

rs193922331 S263P 5 Average and exposed 

rs587780343 C371F 8 Buried residue 

 

 

 Table 7. Analysis of the Structural and Functional Effect of nsSNPs of the Human GCK Gene by the MutPred Server 
 

Substitution MutPred 2 score Molecular mechanisms with P-values <= 0.05 P-value 

I130T 0.740 Altered metal binding 8.8e-03 

Loss of relative solvent accessibility 0.02 

Gain of allosteric site at F133 0.02 

Altered stability 0.04 

Gain of sulfation at Y125 0.01 

V181M 0.694 Loss of relative solvent accessibility 0.02 

Altered metal binding 0.05 

V182M 0.834 Loss of relative solvent accessibility 0.03 

E236K 0.934 Altered metal binding 3.6e-03 

Gain of allosteric site at E236 2.9e-03 

Gain of relative solvent accessibility 0.03 

Altered DNA binding 7.8e-03 

Loss of catalytic site at E236 0.05 

Altered ordered interface 0.02 

E237K 0.769 Altered metal binding 9.9e-04 

Gain of allosteric site at Y234 5.7e-03 

Loss of catalytic site at E236 0.05 

T206P 0.939 Altered metal binding   2.7e-03 

Gain of allosteric site at N204 1.1e-03 

Altered ordered interface 0.03 

Loss of helix 0.03 

Gain of catalytic site at N204 2.5e-03 

Altered DNA binding 0.03 

S263P 0.662 Loss of strand 0.02 

Altered metal binding 0.03 

C371F 0.930   
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was made through the latter and the results are represented in 

Table 7. 

 

Validation of the Generated Models 
      The crystal structure of human glucokinase (GCK)                               

is already present in Protein Data Bank (PDB),                     

crystallization is done by DIFFRACTION X-

RAY 10.2210/pdb1V4S/PDB (ID 1V4S, with resolution 

equal to 2.4 Å), but homology modeling on the native model 

has been performed to model and target the mutants. For that, 

we used the homology modeling tool Swiss Model to produce 

the 3D structure of the native protein and the 7 mutants of 

the GCK protein, to discover whether the 7 high-risk 

missense variants modify the native structure of 

the GCK protein. 

      SWISS-MODEL was used (PDB ID 6e0i.1.A) as a model 

to predict the 3D models and the structures were then 

visualized. The 7 deleterious nsSNPs were individually 

substituted in the native sequence, the sequences were 

submitted to the homology modeling tool SWISS-MODEL 

and then 3D structures models were generated for all mutants. 

After the generation of the native model of the target protein 

as well as the different mutants, we proceeded to the 

validation and verification of these models using five 

structural descriptors by inserting the structure as PDB form 

such as Verify 3D, Errat as well as the output data are taken 

from Swiss-Model Ramachandran Plot, QMEAN, and 

GMQE score, to evaluate the overall quality of the generated 

models. 

      The open-source program PyMol was used to 

superimpose two protein structures of the native model with 

each mutant (Table 8), this superimposition which was 

evaluated on the basis of the RMSD calculation the results 

are mentioned below in (Table 9). All the models we have 

generated have been visualized by (DassaultSystèmes 

BIOVIA, Discovery Studio Modeling Environment, Release 

4.5, San Diego: DassaultSystèmes, 2015). 

 

Comparative Modelling 
      To analyze the topology and the structural similarity 

between the native model and the generated mutants the TM-

align tool was used. The tool calculated a TM and RMSD 

score to measure the average distance between the skeletons 

of the superimposed proteins. The tool provides 2 scores as a  

 

 

result: an RMSD value that must be greater than 0.15 to be 

considered significant and a TM-align score that is normally 

between 0 and 1, a TM-align score < 0.2 indicates no 

similarity between two structures, and a TM-align score > 0.5 

means that the structures share the same fold [28, 33]. As we 

used the RMSD result that was generated during the overlay 

see that it is the basic element for this program the results 

were also mentioned in Table 9 as we calculated the average 

generated by the two tools. 

 
Protein Flexibility  
      In order to categorize amino acid residues into flexible, 

intermediate, or rigid sites and evaluate the levels of residue 

dynamics in a target protein we used the predicted root mean 

square fluctuations (RMSF) and B-factors obtained from the 

PredyFlexy prediction server, seeing that this will direct us 

towards amino acid residues that are highly flexible and that 

are essential for proteins during conformational changes and 

folding because they grant them great movement.  

      RMSF is the value of the displacement of a particular 

atom with respect to the reference structure, its calculation is 

usually based on the alignment of the rigid bodies of the 

structures in each frame of the simulation at the reference 

coordinates, and a high RMSF value reflects the presence of 

significant fluctuation [34]. 

      So, our analysis performed by PredyFlexy as represented 

in Table 10 showed that residues T206P, S263P, V181M, 

E236K, and E237K shared strong to moderate flexibility 

scores respectively with confidence indexes ranging from 6 

to 15, while residues I130T, V182M, C371F were identified 

as rigid with low index scores.  

 

Dynamic Cross-correlation Matrix Analysis by the 
DynOmics Server 
      Dynamic Cross-Correlation Matrix analysis was 

performed to understand the correlated communications 

between residues by taking into account the environment, 

prediction of potential functional sites, and reconstruction of 

conformers of all atoms from structures [35]. 

      The result showed that compared to the wild type, the 

variants i.e., V182M, T206P, and C371F slightly increased 

the degree of positive (red color) and negative (blue color) 

correlations observed in the native GCK inversely to the 

variant S263P which was decreased, resulting in a significant  
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          Table 8. 3D Superimposed  Structures of  Native  (Blue)  and  Mutants  (I130T: Cyan, V181M: Red, V182M:  

                         Green, C371F: Orange, E236K: Purple, E237K: Magenta, T206P: Yellow, and S263P: White) GCK  

                         Investigated by Swiss Model and PyMol 
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correlation in the movement of the residues was noticed in 

the Dynamic Cross-Correlation Matrix maps analysis as 

shown in Fig. 4 and Table 11. 

 
Calculation of the Cumulative Score of nsSNPs 
      We represented on the file (Supplementary Table 1) the 

nsSNPs studied according to all the tools used in the study to 

be able to judge their degrees of pathogenicity through the 

calculation of a cumulative score, the latter where we 

mentioned the neutral prediction by the value 0 and 

deleterious by 1. 

      After combining the result of the ten algorithms, the 

following amino acid substitutions: I130T, C371F, V182M, 

E236K, and  T206P  were  ranked  as  the  most  deleterious 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nsSNPs with a cumulative score of 9 by the ten tools, while 

two variants V181M, E237K obtained a cumulative score of 

8 by the ten tools while only one nsSNP S263P with a score 

lower than eight. So, after this step, seven nsSNPs (I130T, 

C371F, V182M, E236K, T206P, V181M, E237K) were 

evaluated as high-risk pathogenic nsSNPs of the GCK gene 

and were selected for the rest of the study. This step allowed 

us to predict the most deleterious nsSNPs with more accuracy 

and reliability (Show Supplementary Table 1). 

 
Analysis of Protein-protein Interaction Network 
Characterization by STRING 
      Mutation can affect the function and structure of a 

protein, so a mutated protein can interact with other proteins  

Table 9. Structural Alignment Comparing Mutant and Wild-type GCK Models by TM-align 

 

Model TM-score RMSD TM-align RMSD Pymol RMSD MOY 

I130T 0.99887 0.27 0.054 0.16 

V181M 0.99994 0.06 0.061 0.06 

V182M 1.00000 0.02 0.014 0.017 

T206P 0.99999 0.02 0.013 0.016 

E236K 1.00000 0.01 0.002 0.006 

E237K 0.99994 0.06 0.060 0.06 

S263P 0.99999 0.02 0.008 0.01 

C371F 0.99886 0.27 0.061 0.16 

 

 

Table 10. Results of Flexibility Prediction by Using PredyFlexy Server 

 

Model I130T V181M V182M T206P E236K E237K S263P C371F 

Predicted Flexibility Class 0 1 0 2 1 1 2 0 

Confidence index 17 14 13 14 14 15 6 16 

 

 

 Table 11. Correlation between Predicted and Observed Fluctuations of GCK Native and Mutants 

 

GCK structures Native I130T V181M V182M T206P E236K E237K S263P C371F 

Correlation between 

observed and 

predicted fluctuations 

0.53 0.53 0.53 0.55 0.58 0.55 0.53 0.51 0.55 
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Fig. 4. Results of Dynamic Cross-Correlation Map Analysis (DCCM) of native GCK and mutants: A (wild type), B(I130T), 

C (C371F), D (V181M), E (V182M), F (E237K), G (E236K), H (T206P), I (S263P). 
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and cause phenotypic effects. The interactions of 

the GCK protein with other proteins were predicted with the 

online software STRING for associated gene screening. 

Then, we noted a total of 11 nodes (as shown in Fig. 5) 

namely GPI (Glucose-6-phosphate isomerase); GCKR 

(glucokinase regulatory protein); G6PD (glucose-6-

phosphate1-dehydrogenase); PGM1 (phosphoglucomutase-

1); PDX1 (pancreas/duodenum homeobox protein 1); H6PD 

(bifunctional endoplasmic protein); TREH (trehalase); 

NeuroD1 (neurogenic differentiation factor 1); INS (insulin) 

and G6PC. 

 
DISCUSSION 
 

      Glucokinase is primarily synthesized in pancreatic β-

cells, where it catalyzes the final phase of insulin secretion, 

and in hepato-parenchymal cells of the liver, where it 

contributes in glycogen production. And given its crucial role 

in preserving glucose homeostasis, its function is largely 

regulated at several levels. Because it is vulnerable to 

numerous protein-protein interactions, post-translational 

modification events, and other processes that have a variety 

of physiological effects, glucose kinase has the unusual 

capacity to self-regulate its own activity via sluggish 

conformational dynamics. 

      Several diseases have been associated with mutations in 

this gene, which are either activating mutations resulting in 

congenital hyperinsulinemia clinically, although several 

diabetes diseases are caused by loss-of-function mutations 

[36]. 

      These include chronic kidney disease, hypertension, and 

especially diseases directly related to glycemic metabolism. 

In fact, several studies have correlated high fasting blood 

glucose levels 1 and 2 h after OGTT with the rs1799884 

GCK variant in different populations European, Thai and 

Scandinavian [37,38], including hyperglycemia, GCK-

MODY, and gestational diabetes, for which several studies 

have examined its association with GCK as a candidate gene, 

and for which a number of genetic variants have been 

identified [39-41]. 

      Besides the clinical studies, bioinformatics studies were 

carried out with the aim of studying the catalytic process of 

human glucokinase, where they proceeded by homology 

modeling in order to construct a  glucokinase  complex with  

 

 

 
Fig. 5. Protein-protein interaction network of Glucokinase 

illustrated by STRING server. 

 

 

ATP, glucose, and Mg2+ (GMAG complex), with which they 

carried out a simulation of molecular dynamics and 

calculated the free energy of binding. It was reported as a 

result that Lys169Asn which is one of the natural mutations 

of the GCK gene has an extremely important functional role 

in glucose metabolism as it enhances the binding of 

glucokinase to both ATP and glucose as it binds ATP and 

glucose together and participates directly in glucose 

phosphorylation, the result which is key to understand the 

catalytic mechanism of GK and the cause of MODY 

pathogenic mechanism due to glucokinase mutation[42]. On 

the experimental side Ramasammy. R and his team showed 

in 2021 that the GCK gene polymorphism is associated with 

gestational diabetes through an experimental analysis 

performed on a set of 419 samples collected from 210 

pregnant women with gestational diabetes and 209 controls, 

in which they showed the association between the AA 

genotype (ORs = 2.9) and the A allele (ORs = 2.4) with the 

increased risk of gestational diabetes [3].  

      Also, It has been shown by Shaat et al. (2006) that 

common polymorphisms in the GCK gene increase the risk 

of GD in Scandinavian women [38]. Anette P. Gjesing and her  

666 



 

 

 

In Silico Analysis Predicting the Structural and Functional Effects/Phys. Chem. Res., Vol. 11, No. 3, 653-673, September 2023. 

 

 

team also conducted a study in Denmark (2017) in which they 

reported a prevalence of 5.8% of GCK, HNF1A, HNF4A, 

HNF1B, or INS variants in women diagnosed with GD, with 

the involvement of six variants (Gly73Arg, Gly73Glu, 

Ala209Val, Ser442Pro) of the GCK gene that was considered 

to be possibly pathogenic [43].  

      In the same context, several studies have experimentally 

shown the association of some deleterious variants of the 

gene with the disease and have been reported to influence 

susceptibility to MG which was in agreement with our result 

this concerns (rs193922331 and rs587780346)indicating that 

increased attention to the screening of this gene in women 

with MG was warranted [44-47]. Maria Negahdar et al. 

(2012) showed that the serine residue at position 263 is 

associated with GCK-MODY diabetes through protein 

misfolding leading to destabilization and increased rate of 

degradation as well as reduced GCK catalytic activity in 

pancreatic β cells [44]. Another line of research Yael Gozlan 

et al. (2012) have shown experimentally by sequencing and 

confirmed by DGGE that a mutation at the threonine residue 

at position 206 is strongly linked with GCK-MODY and they 

have also supported their result by a bioinformatics approach 

using the NEST program to which they suggested the effect 

of the T206P mutation on the amino acids M210 and C233 

which are essential for the enzymatic activity of GCK [46]. 

      Among SNPs, nsSNPs are associated with a single 

substitution of an amino acid that will subsequently encode 

an erroneous codon which may affect the structure and 

functionality of the protein. 

      In this study, we selected highly deleterious mutations of 

the autosomal GCK gene located on chromosome 7p13  and 

possessing 12 exons and responsible for the expression of 

glucokinase (a monomeric protein of 465 amino acids and 

weighing approximately 50 kD) [48,49]. The genomic data 

of the variations were extracted from the Ensembl database, 

from which we selected 8 non-synonymous mutations that 

were predicted to be the most deleterious and located in 

conserved positions, the latter of which underwent a thorough 

analysis through several software programs based on 

different algorithms to allow annotation of nsSNPs and to 

detect structural changes upon the selected mutations. 

      rs1036483919 (I130T). Isoleucine is replaced by 

threonine at position 130. This mutation has been predicted 

by  4 tools  as  damaging,  and  its  occurrence  will   cause a  

 

 

decrease in the stability of the GCK protein as it is placed in 

a moderately conserved and buried region which has been 

demonstrated by the Consurf server, the mutation will also 

generate several changes at the molecular level such as 

Altered Metal-binding, Loss of Relative solvent accessibility, 

Gain of Allosteric site at F133, Altered Stability and Gain of 

Sulfation at Y125 the result which was demonstrated by the 

Mutpred server and validated with a score of 0.740 which is 

considered significant, as we used the TM-align and Pymol 

tools to see if the mutant model and superimpose with the 

native model the result showed a difference and a non-

superimposition between the 2 structures with an RMSD of 

0.16 which is considered significant. 

      rs587780343 (C371F). Cysteine is replaced by 

Phenylalanine at position 371. This mutation has been 

predicted by 5 tools as damaging, and its occurrence will 

cause a decrease in the stability of the GCK protein. The 

residue is placed in a fairly conserved area and buried with a 

score of 8 as declared by the Consurf tool, the mutation has 

also generated a change at the molecular level which 

manifests itself as an Altered Metal Binding with a very 

significant p-value (3.6e-03), the average RMSD raised from 

the two tools used TM-align and Pymol showed a significant 

difference between the 2 native and mutant structures with an 

RMSD of 0.16. 

      rs587780345 (V181M). Valine is replaced by 

Methionine at position 181. This mutation has been predicted 

by 4 tools as damaging, and its occurrence will cause a 

decrease in the stability of the GCK protein, as it is placed in 

a moderately conserved and buried region as demonstrated 

by Consurf with a score of 7, the mutation will also generate 

several changes at the molecular level such as Loss of 

Relative solvent accessibility and an Altered Metal-binding 

with a score of 0.69 which is considered significant since it 

is higher than 0.5, the average RMSD raised from the two 

tools used TM-align and Pymol showed a slight not overlap 

between the 2 native and mutant structures with an RMSD of 

0.06. 

      rs587780345 (V182M). Valine is replaced by 

Methionine at position 182. This mutation has been predicted 

by 4 tools as damaging, and its occurrence will cause a 

decrease in the stability of the GCK protein, as it is placed in 

a fairly conserved and buried area, as demonstrated by 

Consurf with a score of 8, the mutation has also generated a  
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change at the molecular level which manifests itself as Loss 

of Relative solvent accessibility with a significant p-value 

(0.03), the average RMSD raised from the two tools used 

TM-align and Pymol showed a slight not overlap between the 

2 native and mutant structures with an RMSD of 0.017. 

      rs587780347 (E237K). Glutamic acid is replaced by 

Lysine at position 237. This mutation has been predicted by 

5 tools as damaging, and its occurrence will cause a decrease 

in the stability of the GCK protein, the residue is placed in a 

buried area, the mutation will also generate several changes 

at the molecular level such as Altered Metal-binding, Altered 

Metal-binding, and Gain of Allosteric site at Y234, with a 

significant score of 0.769, the average RMSD raised from the 

two tools used TM-align and Pymol showed a slight not 

overlap between the 2native and mutant structures with an 

RMSD of 0.06. 

      rs587780347 (E236K). Glutamic acid is replaced by 

Lysine at position 236. This mutation has been predicted by 

5 tools as damaging, and its occurrence will cause a decrease 

in the stability of the GCK protein. The residue is located on 

the surface of the protein and is a highly conserved area with 

a conservation score of 9 which is very significant, the 

mutation will also generate several changes at the molecular 

level such as Gain of Allosteric site at E236, Gain of Relative 

solvent accessibility, Loss of Catalytic site at E236 and 

Altered Ordered interface, the average RMSD raised from the 

two tools used TM-align and Pymol showed a slight not 

overlap between the 2 native and mutant structures with an 

RMSD of 0.006. 

      rs587780346 (T206P). Threonine is replaced by Proline 

at position 206. This mutation has been predicted by 5 tools 

as damaging, and that its occurrence will cause a decrease in 

the stability of the GCK protein. The residue is located on the 

surface of the protein and is a highly conserved area with a 

conservation score of 9 which is very significant, the 

mutation will also generate many changes at the molecular 

level which occurs in Altered Metal-binding, Gain of 

Allosteric site at N204, Altered Ordered interface, Loss of 

Helix, Gain of Catalytic site at N204, Altered DNA binding 

with a MutPred score of 0.939, the average RMSD raised 

from the two tools used TM-align and Pymol showed a slight 

not overlap between the 2 native and mutant structures with 

an RMSD of 0.016. 

      rs193922331 (S263P). Serine is  replaced  by  Proline at 

 

 

position 263. This mutation has been predicted by 3 tools as 

damaging and that its occurrence will cause a decrease in the 

stability of the protein, it is placed in an exposed and average 

area with a score of 5 as it generated molecular changes 

according to the Mutpred tool; Loss of Strand and an Altered 

Metal-binding; with a score of 0.662. The average RMSD 

raised from the two tools used TM-align and Pymol showed 

a slight not overlap between the 2native and mutant structures 

with an RMSD of 0.01. 

      After the generation of the mutant models by homology 

with the SWISS-MODEL tool, we had to ensure the quality 

of our models by using several quality verifications tools 

(Ramachandran Plot, QMEAN, and GMQE score, Errat and 

Verify 3d). These tools confirmed the validity of our models 

and that they are within the required standards. 

      The interactions of the GCK protein with other proteins 

were predicted with the online software STRING for 

associated gene screening, a total of 11 nodes were involved 

in the protein-protein interaction network (PPI), as shown in 

the figure below with an enriched PPI p-value of 1.2e-06 and 

an average local clustering coefficient of 0.84. Thus the result 

showed 11 main genes evaluated by the degree of 

connectivity in the PPI network which are GPI (glycolytic 

enzyme); GCKR (inhibits glucokinase by forming an inactive 

complex with this enzyme); G6PD (the main function of this 

enzyme is to provide reducing power (NADPH)); G6PC 

(forms with the glucose-6-phosphate transporter (SLC37A4/ 

G6PT) the complex responsible for the production of glucose 

by glycogenolysis and gluconeogenesis); PGM1 (this 

enzyme participates in both the degradation and synthesis of 

glucose); PDX1 (particularly involved in glucose-dependent 

regulation of insulin gene transcription); INS (which 

decreases the concentration of glucose in the blood); H6PD 

(oxidizes glucose-6-phosphate and glucose); TREH 

(intestinal trehalase is probably involved in the hydrolysis of 

ingested trehalose, belongs to the glycosyl hydrolase 37 

families); NeuroD1 (acts as a transcriptional activator). Thus, 

the results show that the GCK protein has protein interactions 

that are particularly involved in carbohydrate metabolism. 

Any change in the structure and function of the protein can 

affect its ability to interact with other molecules. The 

STRING map showed the interaction of glucokinase with 11 

different proteins, which was experimentally confirmed                   

[50-54].   
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      To analyze the topology and the structural similarity 

between the native model and the generated mutants the TM-

align tool was used. The tool calculated a TM and RMSD 

score to measure the average distance between the skeletons 

of the superimposed proteins. The RMSD results for 

modelled mutants 1 and 4 were significant for pathogenicity 

considering that RMSD values above 0.15 are considered 

significant structural perturbations that could have functional 

implications for the protein. Eight nsSNPs out of 2783 

nsSNPs on the GCK protein were considered the most 

pathogenic nsSNPs. All eight nsSNPs were included for 

further analysis (Table 10). The results showed that 7 of the 

8 substitutions resulted in a highly significant degree of 

pathogenicity. Amino acid substitutions in GCK: I130T, 

C371F, V182M, E236K, and T206P had the highest 

cumulative score (CS = 9), predicted to be damaged by 9 out 

of 10 tools. 

      The nsSNPs on which we have worked, some of them 

have already undergone experimental studies that have 

treated the link between the mutation of the nsSNP and the 

appearance of the pathology, the thing that we have 

confirmed in silico, whereas the others have still not been 

studied experimentally for this, this study is going to be very 

interesting for the teams that want to work on this disease 

because it's going to allow them to narrow down the number 

of nsSNPs from 2783 to 7 so they're going to target the 

nsSNPs that have proven a high level of pathogenicity in in 

silico to prove that experimentally, and focus on those that 

are most likely to be damaged and involved. 

 
CONCLUSION 
 

      The present in silico analysis of nsSNPs in the 

human GCK gene concluded that the mutations I130T, 

C371F, V181M, V182M, E237K, E236K, and T206P are the 

most deleterious nsSNPs among the gene variants. The seven 

nsSNPs were predicted to be damaging, located in fairly 

conserved regions, and also affecting the stability of the 

protein. Therefore, these mutations would probably affect the 

function of the GCK protein. Therefore, the results of this 

study confirm the previous findings and may be useful as a 

target for teams seeking to work further on this topic and to 

experimentally prove the link between these variants and 

gestational diabetes.  Therefore,  additional  confirmation of  

 

 

the outcomes generated from the study is suggested through 

clinical and/or laboratory examinations. 
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