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      In the current landscape of drug discovery, various docking programs for virtual database screening significantly reduce costs and time. 

This study re-docked twenty-three known inhibitors of glycogen phosphorylase (GP), a key target for type 2 diabetes (T2D) therapy, using 

seven methods including Autodock 4 (AD4), AutoDockVina (Vina), modified Vina (mVina), Standard Precision mode (SP) and Extra 

Precision mode (XP) of Glide methods, Molecular Operating Environment (MOE) and Genetic Optimization for Ligand Docking (GOLD). 

Results showed that GOLD showed the worst computational precision with the highest RMSE of 20.98 kcal mol-1. Conversely, MOE was 

the most precise with the lowest RMSE of 1.99 kcal mol-1, closely followed by AD4 (2.27 kcal mol-1). However, MOE failed to generate the 

correct ligand-binding pose, showing a 0% success rate in docking for all RMSD resolutions (<0.2, 0.15, and 0.1 nm). Among the top-

performing methods, GOLD surpassed others in docking success rates for GP ligands, achieving 96% success at RMSD < 0.2 nm, compared 

to 74%, 70%, and 74% for AD4, Vina, and mVina, respectively. These four packages can produce a ligand-binding posture that closely 

resembles the crystal structure discovered through experimental studies. The findings serve as the foundation for selecting an appropriate 

tool for screening candidate drugs for the T2D therapeutic target. 
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INTRODUCTION 
 

      Recent advancements in computational chemistry have 

significantly impacted drug discovery methodologies [1,2]. 

These techniques, such as Density Functional Theory (DFT) 

and molecular docking, explored across a variety of 

compounds, have proven effective in elucidating molecular 

interactions and properties of potential therapeutics, offering 

critical insights into their structural and electronic aspects [3-

5]. This efficiency enhances  the drug  development process,  
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facilitating the rapid and cost-effective identification of new 

therapeutic agents. Furthermore, molecular docking, 

recognized for evaluating ligand binding affinity to target 

proteins [6-9], has gained prominence due to its versatility 

and precision. Demonstrated by various studies [10-13], it 

effectively forms stable complexes with enzymes and 

receptors, providing valuable insights into compounds' 

potential as enzyme inhibitors or anticancer agents. The field 

has seen the development of a myriad of docking servers, 

software packages, and applications, each employing unique 

force fields and algorithms. Free open-source docking tools 

that may quickly ascertain the ligand binding affinity can be 

mentioned as Autodock4 (AD4) [14], Autodock Vina (Vina)  
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[15], mVina (an experimental parameter correction version 

of Vina) [16], and molecular operating environment (MOE) 

[17]. Besides, well-established commercial packages such as 

Glide standard precision (SP) and extra precision (XP) [18-

20] and Genetic Optimization for Ligand Docking (GOLD) 

[21] have also been widely used as scoring functions for the 

protein-ligand docking program.  

      Worldwide, about 10% of the population has been 

affected by diabetes mellitus, a chronic condition, which is 

characterized by the body's inability to effectively regulate 

blood sugar levels [22,23]. There are two main types: Type 

1, where the body fails to produce sufficient insulin [24], and 

Type 2, characterized by the body's resistance to insulin or 

insufficient production [25]. Managing diabetes typically 

involves lifestyle changes, monitoring blood glucose levels, 

and medication [26]. For Type 1 diabetes, insulin therapy 

remains the cornerstone, with advancements in insulin types 

and delivery methods improving patient experiences [27]. 

More than 90% of diabetic patients have type 2 diabetes 

(T2D), which is frequently linked to obesity [23]. The 

incidence and prevalence of T2D are rising internationally 

despite a better understanding of the risk factors for the 

illness and evidence of effective preventative programs. 

Numerous researchers have looked at the etiology of T2D in 

an effort to create better treatments [25]. T2D thus sees a 

broader array of drugs [28], including metformin, which 

enhances the body's response to insulin [29], and various 

other classes like sulfonylureas [30], DPP-4 inhibitors [31], 

and GLP-1 receptor agonists [32], each with unique 

mechanisms to manage blood sugar levels. Furthermore, 

recent developments in SGLT2 inhibitors offer not only 

blood sugar control but also cardiovascular and kidney 

benefits [33,34]. 

      Glycogen phosphorylase (GP), which catalyzes the first 

stage of glycogen phosphorolysis in the liver, has emerged as 

a potential target in T2D treatment. GP catalyzes the 

phosphorolytic cleavage of glycogen at the α-1,4-glycosidic 

bond, producing glucose 1-phosphate (G-1-P) and a glycogen 

polymer that is one sugar residue shorter [35]. Different GP 

inhibitors have been discovered and can be divided into 2 

groups, the first is the inhibitors suppressing GP by directly 

binding to the enzyme via the active site, azasugar site, AMP 

site, indole-binding site, purine-nucleoside site, and 

glycogen-storage site, and the second is the inhibitors that can  

 

 

indirectly suppress gluconeogenesis by interfering with 

glucose/glycogen cycling [35].  

      While molecular and pharmacological data shows that 

inhibiting GP is an appealing method for lowering 

hyperglycemia in T2Ds, there are a number of problems and 

concerns about safety and effectiveness. The most crucial 

unanswered question is whether or not persistent GP 

inhibition may lower blood glucose levels in T2Ds by a level 

that is clinically relevant. The GP inhibitors that have been 

identified so far do not show a lot of selectivity for the GP 

isoform in the liver [35] due to the high homology of GP 

isoenzymes between skeletal muscle and liver and the 

conserved binding site for GP inhibitors throughout 

isoenzymes [36]. In light of the ongoing quest for effective 

GP inhibitors, this study represents a significant 

advancement by conducting a comprehensive comparison of 

seven docking software packages, including AD4, Vina, 

mVina, SP, XP, MOE, and GOLD. This marks the first time 

such a broad range of software tools has been evaluated side-

by-side specifically for GP inhibitors. Our objective is to 

meticulously evaluate each software's efficacy in different 

metrics, such as precision in computation, pose accuracy, and 

successful docking rates. This holistic assessment aims to 

guide future researchers in selecting the most appropriate and 

efficient software for screening potential GP inhibitors, 

serving as the foundation for the discovery of new drugs for 

T2D treatment. 

 
MATERIALS AND METHODS 
 

Parameterized Complexes 
      The initial structures of twenty-three GP-ligand 

complexes were obtained from the Protein Data Bank (PDB), 

including 1AXR [37], 1GGN [38], 1HLF [38], 1K06 [39], 

1K08 [39], 1KTI [39], 1NOJ [40], 1NOK [40], 2G9Q [41], 

2PRJ [42], 2QRG [43], 2QRH [43], 2QRM [43], 2QRP [43], 

2QRQ [43], 3G2H [44], 3G2I [44], 3G2J [44], 3G2K [44], 

3G2L [44], 3G2N [44], 3SYM [45] and 3SYR [45]. The 

generation of parameters for rigid proteins and flexible 

ligands was accomplished using AutodockTools 1.5.6 [14]. 

These parameters were then recorded as files in the PDBQT 

format (Protein Data Bank with Partial Charge – Q and Atom 

Type – T). In order to represent both the receptor and ligand, 

a unified  atom  model  with   polar   hydrogen   atoms   was  
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employed [46]. To predict atomic charges for the proteins, 

the Gasteiger-Marsili method was utilized [47,48]. 

 

Molecular Docking via AutoDock Vina and mVina 
      Re-docking, also known as the method of re-binding the 

ligand to the corresponding target receptor, aims to evaluate 

whether the algorithm and prediction parameters are 

consistent with the experimental ones. The re-docking model 

is shown in Fig. 1. 

      The Vina scoring function is entirely empirical and 

includes terms for hydrophobic and torsion forces as well as 

hydrogen bonds, repulsion, and Gaussian steric interactions 

[15]. While mVina has the experimental parameters                               

altered to improve the ability to rank ligand binding                       

affinities [16]. Molecular docking was conducted                                                 

using both the Vina package and mVina 

(https://github.com/sontungngo/mvina.git). The global 

searching parameter was set to the short option of 8. For the 

Vina docking grid center, the center of mass of the ligand was 

selected from the experimental pose (x = 33.899 Å;                                       

y = 23.574 Å; z = 29.130 Å). The docking grid was identified 

to be 20 × 20 × 20 Å3 in order to completely cover the target 

active site. The maximum energy difference between the 

worst and best docking profiles was set at 7 kcal mol-1. The 

lowest binding free energy mode was then determined from 

the docking conformations.  

 

Molecular Docking via AD4 
      The semiempirical AD4 scoring function includes a 

Coulomb   potential  term,  a  Lennard-Jones  12-6  potential 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

term, a desolvation term linked to volume, and a 

conformational entropy term related to the quantity of 

rotational bonds [14]. Using the same grid center as Vina 

docking, AutoDock 4.2 docking simulations were performed. 

Autogrid4 was employed to generate a 60 × 60 × 60 Å grid 

with a grid spacing of 0.375 Å. A genetic algorithm (GA) run 

of 10 was selected, with a population size and generation 

number of 150 and 27,000, respectively. The GA number of 

evaluations was set at 250,000, equivalent to the short option. 

The conformational cluster with the lowest binding free 

energy was identified as the optimal docking model. 

Furthermore, the AutoDock 4.2 method produced 120,000 

ligand poses. The ligand-binding affinity was determined as 

the average binding free energy of the entire conformation 

defined in the cluster. 

 
Molecular Docking via Glide Standard Precision 
and Extra Precision 
      Glide approximates a full systematic search of the 

conformational, orientational, and positional space of the 

docked ligand, in contrast to existing approaches for docking 

ligands to the hard 3D structure of a known protein receptor 

[18]. Compared to the standard scoring function SP, XP 

introduces novel terms into the binding free energy scoring 

function, significantly improving Glide's ability to identify 

known active chemicals from a random ligand library [20]. 

Glide docking simulations were run using the SP [18, 19] and 

XP [20] scoring functions. Maestro's "Protein Preparation 

Wizard" and Ligprep were used to generate the receptors              

and ligands, respectively. The  docking  settings  were  set to 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Fig. 1. Re-docking model of representative ligand to GP protein. 
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default, and 10 docking postures were generated during the 

simulations. The conformation with the highest ligand-

binding affinity was selected. 

 
Molecular Docking via MOE 
      MOE's docking package utilizes an intricate blend of 

scoring functions and sophisticated algorithms, intricately 

assessing the interaction dynamics between a ligand and its 

target protein [17]. Specifically for docking, MOE uses an 

algorithm known as the "Triangle Matcher" for pose 

generation, followed by a refinement process using the 

London dG scoring function. The MOE 2015.10 software 

was utilized to prepare the ligands and proteins for docking 

simulations. The MOE QuickPrep tools were used to convert 

the ligands into their respective 3D structures, which were 

then used as input files. The ligand energy was minimized 

using the MMFF94x force field until a gradient of 0.01 was 

achieved. Following energy minimization, the proteins were 

prepared for docking by protonation Protonate 3D tools 

implemented in MOE. Due to the limited resolution of most 

macromolecular crystal structures, these structures typically 

have little or no hydrogen coordinate data. The Amber99 

force field was employed for energy minimization up to a 

0.01 gradient following protonation. The Triangular 

Matching docking method was used to dock the ligands into 

the protein's active site, and 100 conformations of each 

ligand-protein complex were generated with docking scores. 

 
Molecular Docking via GOLD 
      GOLD employs a sophisticated genetic algorithm to 

predict the binding poses of ligands in protein targets [21]. It 

generates multiple ligand conformations, assesses their fit 

within the protein binding site using a detailed scoring 

function, and optimizes these poses iteratively [21]. This 

process not only determines the most feasible binding 

configurations but also estimates the ligand's binding affinity, 

crucial for evaluating potential drug efficacy. GOLD v.5.7.3 

software was used to dock the GP inhibitors. During each run, 

a population of 10 individuals underwent several GA 

operations. The operator weights for crossover, mutation, and 

migration were set to their standard default values of 95, 95, 

and 10, respectively. The cutoff value for van der Waals was 

2.5 and the distance for hydrogen bonds (HB) was set to               

3.5 Å. 

 

 
Structural Analysis  
      Using GROMACS tools [49], the root-mean-square 

deviation (RMSD) was calculated between two structures. 

The interactions of the docked poses of ligand-GP complexes 

were then illustrated using either Pymol or BIOVIA 

Discovery Studio Visualizer software. 

 
RESULTS  
 
Estimated Ligand-Binding Free Energy 
      Table 1 displays the free binding energy calculations of 

23 ligands with GP using seven software packages. To 

increase the likelihood of accuracy, only the results with the 

lowest free binding energy or best binding affinity are taken 

into account. The docking scores produced by six out                     

of the seven software packages ranged from -15.5 to                                       

-4.75 kcal mol-1, with the majority of free binding energies 

falling below -5.0 kcal mol-1. However, GOLD produced 

values that were unrealistically negative. It's important to 

note that the seven docking methods employed did not factor 

in the complexity of the system's dynamics, the influence of 

the explicit solvent, or the ligand's restricted docking 

position. As a result, this could lead to a decrease in the 

accuracy of predicting protein-ligand binding affinity. 

      The smaller the root-mean-square error (RMSE), the 

higher the accuracy of the method. The RMSE values 

between the docking and experimental data when using the 

seven methods are shown in Table 2. The results show that 

MOE had the highest precision calculation and GOLD had 

the lowest. Among the five remaining techniques, AD4 

produces the most accurate estimation of ligand-binding 

affinity, followed by Vina and SP, and XP and mVina. In 

addition, the standard error (SE) of the mean binding-free 

energy ∆Gpre obtained by MOE was the smallest, followed by 

AD4, Vina, and SP, respectively. Meanwhile, the SE value 

for GOLD was the highest, followed by those of XP and 

mVina (Table 2). Together, it is shown that the MOE docking 

method converged faster than the other approaches, while 

GOLD failed to calculate the proper binding free energy of 

GP ligands. 

      The initial ligand structure was related to the docking 

success rate, where the ligand conformation was considered 

the successful binding conformation when the RMSD              

of  atomic  positions  from  the  corresponding  experimental 
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structure was less than 0.2 nm [50]. The results of calculating 

the RMSD value are shown in Table 3 accordingly, and they 

reveal that GOLD possesses the smallest mean RMSDGOLD of 

0.08 ± 0.01 nm, indicating that GOLD efficiently constructs 

the accurate binding pose for GP ligands. Interestingly,                

the  three  approaches,  including  AD4,  Vina,  and   mVina, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

produced comparable accuracy in the determination of the 

ligand-binding pose. In particular, the mean values 

RMSDAD4/Vina/mVia between experimental structures and 

docked shapes using three protocols were 0.09 ± 0.02 nm. 

Meanwhile, the average RMSD of SP, XP, and MOE                    

was  significantly   higher  at    0.2 ± 0.46,   0.4 ± 0.11,   and  

Table 1. Free Binding Energy Predicted by Five Docking Software Packages. The Experimental Affinity 𝐺ୣ୶୮ was 

Estimated via the Equation G = -RT lnki. where ki is the Inhibition Constant, R is the Gas Constant and T is the Absolute 

Temperature 

 

No. Complex 
∆Gexp 

(kcal mol-1) 

∆Gpre (kcal mol-1) 

AD4 Vina mVina SP XP MOE GOLD 

1 1NOK -4.33 -6.70 -7.50 -9.70 -8.78 -10.01 -6.56 -23.30 

2 2PRJ -6.17 -6.26 -7.80 -10.20 -8.57 -12.25 -7.27 -27.40 

3 2G9Q -8.78 -4.73 -5.40 -6.40 -7.11 -6.72 -5.52 -20.70 

4 2QRP -8.51 -10.30 -12.20 -17.00 -9.80 -13.10 -9.56 -34.72 

5 3G2K -6.58 -11.22 -11.70 -17.00 -10.82 -12.89 -8.80 -32.30 

6 3SYR -7.00 -8.17 -9.10 -12.70 -10.91 -12.92 -8.13 -56.66 

7 3G2H -5.24 -7.58 -9.60 -13.30 -4.75 -5.43 -7.87 -30.14 

8 1KTI -4.71 -7.09 -9.00 -12.10 -8.48 -11.15 -7.65 -22.46 

9 3SYM -6.27 -7.07 -9.50 -13.20 -11.41 -13.94 -7.84 -23.78 

10 1NOJ -4.33 -6.86 -7.40 -9.40 -7.62 -9.62 -6.26 -19.20 

  11   3G2I   -6.68   -6.60   -8.80   -12.10   -9.54   -12.88   -7.80   -22.14 

  12   3G2J   -6.52   -6.27   -8.10   -10.80  -8.93  -12.68   -7.36   -24.97 

  13   2QRQ   -7.00   -8.01   -10.10   -13.90  -9.80  -13.10   -7.84   -10.48 

  14   2QRH   -6.46   -8.80   -10.30   -14.00  -10.27  -13.17   -8.37   -32.52 

  15   2QRG   -7.11   -9.59   -10.50   -14.80  -10.84  -14.52  -8.42  -9.67 

  16   2QRM   -5.54   -8.65   -10.80   -15.50  -10.71  -12.55  -8.66  -4.08 

  17   1GGN   -7.56   -5.53  -8.60   -11.10  -9.57  -13.66  -6.62  -21.01 

  18   1AXR   -4.49   -6.88  -7.20  -9.70  -8.88  -11.43  -6.16 -23.65 

  19  1HLF   -7.74   -6.95  -8.10  -11.00  -9.44  -10.30  -6.66 -43.35 

  20  3G2N   -5.62   -7.35  -9.00  -12.60  -9.68  -12.89  -8.00 -29.09 

  21  3G2L   -5.31   -9.30  -10.00  -14.80  -10.05  -12.12  -8.92 -32.12 

  22 1K08   -7.33   -7.35  -9.70  -13.60  -6.75 -7.64  -8.86 -25.67 

  23 1K06   -7.33   -6.95  -9.60  -13.60  -9.44  -14.93  -8.63 -25.23 

 

 

 Table 2. RMSE and SE of Seven Docking Packages 

 

 AD4 Vina mVina SP XP MOE GOLD 

RMSE (kcal mol-1) 2.27 3.29 6.71 3.41 5.99 1.99 20.98 

SE (kcal mol-1) 0.32 0.32 0.53 0.33 0.52 0.22 2.27 
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0.41 ± 0.02 nm, respectively, pointing out that these three 

methods did not generate proper ligand-binding poses. It 

should be noted that the computed error is the standard error 

of the mean. 

      It is clearly the case that the higher the docking success 

rate, the more suitable the method is for ligand-binding pose 

identification because the docking ratio represents the 

probability of finding the native binding pose compared to 

the experimental structure. Considering RMSD values 

smaller than 0.2, 0.15, and 0.1 nm, respectively, the 

percentage of docking success changes accordingly (Fig. 2). 

As expected, GOLD had the best docking success rate among 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

all tested methods, showing up to 96% at RMSD < 0.2 nm, 

83% at RMSD < 0.15 nm, and 70% at RMSD < 0.1 nm. The 

docking success rates of AD4, Vina, and mVina were 74%, 

70%, and 74%, respectively, at RMSD values below 0.2 and 

0.15 nm. At the RMSD value < 0.1 nm, the successful-

docking percentage decreased by 65%, 52%, and 61%, 

respectively, for the three methods. Meanwhile, the docking 

success rates of SP were 70% and 61% at the resolution of 

RMSD below 0.2 and 0.15 nm, respectively. When the 

RMSD was less than 0.1 nm, the rate dropped quickly to 

48%. Regarding XP, when RMSD was less than 0.2 and 0.15 

nm, the successful-docking  percentage  was  only 52%, and  

Table 3. RMSD Values of the Seven Docking Methods 

 

No. Complex 
RMSD (nm) 

AD4 Vina mVina SP XP MOE GOLD 

1 1NOK 0.03 0.02 0.02 0.07 0.10 0.27 0.02 

2 2PRJ 0.07 0.02 0.06 0.11 0.05 0.34 0.01 

3 2G9Q 0.01 0.03 0.03 0.67 0.63 0.2 0.1 

4 2QRP 0.04 0.05 0.05 0.09 1.61 0.57 0.07 

5 3G2K 0.15 0.05 0.05 0.10 1.65 0.56 0.09 

6 3SYR 0.05 0.05 0.05 0.06 0.06 0.39 0.02 

7 3G2H 0.04 0.06 0.08 0.46 0.46 0.44 0.03 

8 1KTI 0.04 0.06 0.06 0.07 0.08 0.4 0.17 

9 3SYM 0.05 0.06 0.07 0.33 0.33 0.4 0.06 

10 1NOJ 0.04 0.07 0.07 0.05 0.05 0.28 0.06 

11 3G2I 0.10 0.08 0.08 0.11 0.11 0.42 0.08 

12 3G2J 0.07 0.09 0.07 0.57 0.57 0.36 0.07 

13 2QRQ 0.05 0.11 0.10 0.09 1.61 0.47 0.17 

14 2QRH 0.10 0.11 0.11 0.07 0.07 0.45 0.02 

15 2QRG 0.05 0.11 0.11 0.33 0.32 0.53 0.17 

16 2QRM 0.12 0.12 0.12 0.66 0.66 0.53 0.2 

17 1GGN 0.25 0.25 0.26 0.07 0.05 0.3 0.05 

18 1AXR 0.28 0.28 0.27 0.08 0.08 0.31 0.06 

19 1HLF 0.37 0.37 0.36 0.10 0.07 0.28 0.01 

20 3G2N 0.10 0.40 0.05 0.06 0.06 0.43 0.04 

21 3G2L 0.41 0.48 0.48 0.07 0.07 0.46 0.03 

22 1K08 0.55 0.55 0.57 0.66 0.86 0.53 0.14 

23 1K06 0.56 0.56 0.57 0.20 0.46 0.52 0.1 
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the rate got as low as 43% at the resolution of RMSD < 0.1 

nm. There is no doubt that MOE possessed an extremely poor 

docking success rate of as low as 0% regarding all resolutions 

of RMSD values, proving that this technique cannot generate 

the precise binding pose of GP ligands. Overall, except for 

XP, SP, and MOE, the four docking methods including AD4, 

Vina, mVina and GOLD always give a high success 

percentage (>50%), but GOLD has a superior docking 

success rate compared to the other three methods.  

 

Redocked Binding Pose 
      All-atom molecular dynamic (MD) simulations were 

routinely used to validate docking results. The ligand-binding 

position appears to be a significant element since it is linked 

to the accuracy of free energy calculations using MD 

simulations. To study the ligand-receptor interaction, the 

input molecular structure is very important. If the docking 

position is far from the initial position, the MD simulation 

takes a long time to bring the system to equilibrium. If the 

system is poorly controlled, it may reach a false equilibrium. 

As a result, the  accuracy  of  binding  affinity  estimation is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

greatly reduced. Therefore, it is required to conduct an 

assessment of docking position, rank docking poses 

compared to the experimental data, and obtain which 

software generates docking poses closest to the original. 

Hence, the subsequent MD simulation will be shorter and 

more accurate accordingly. Four docking packages including 

AD4, Vina, mVina, and GOLD were shown above to produce 

suitable docking binding poses for GP ligands. Here, the 

binding structures of representative GP inhibitors gained by 

AD4 and GOLD methods are subsequently analyzed.  

      Binding poses by AD4. The GP enzyme exists in two 

forms: a comparatively inactive form GP(b) and a more 

catalytically active form GP(a). Reversible phosphorylation, 

which changes the inactive b form (T state) into its active a 

form (R state), is the primary regulation mechanism in the 

liver [51]. Figure 3 shows the interaction between N-acetyl-

beta-D-glucopyranosylamine (NBG) and the binding site of 

GP (b form) obtained via re-docking NBG into the complex 

ID 2PRJ [42] by AD4. The amino acids of GP involved in the 

interaction with NBG predicted by redocking were Asn284, 

Glu672, His377, Ser674, and Gly675. A HB is formed from  

Fig. 2. Successful docking rates were obtained via seven protocols upon various resolutions.  
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(-OH-C2) of NBG as the hydrogen acceptor, and (-NH) of 

Asn284 as a hydrogen donor, which stabilizes the 280s loop 

of GP [51]. The (-OH-C3) of NBG is the hydrogen donor and 

the (C=O) group of Glu672 is the hydrogen acceptor, forming 

the second HB. The third HB is made up of (-OH-C3) as the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hydrogen acceptor and (-NH) of Ser674 as the hydrogen 

donor. Also, the same position (-OH-C3) is the hydrogen 

acceptor, and (-NH) of Gly675 is the hydrogen donor, 

creating an additional HB. A fifth HB is formed between              

(-OH-C4) as the hydrogen acceptor and  (-NH) of Gly675 as  

 
Fig. 3. Interaction of NBG ligand in the complex 2PRJ. (A) Detailed 3D interaction between the NBG ligand and GP 

protein was obtained via re-docking simulations using the AD4 package. The carbon atom of NBG is green, red represents 

the oxygen atom (O), blue is nitrogen (N) and hydrogen (H) is white. (B) Match of the ligand NBG in the complex 2PRJ 

attained via X-ray crystal structure and docking simulations. (C) Compatibility of ligand NBG from X-ray crystal structure 

(green C atom) and docking simulations (pink C atom). The red hyphen represents the GP-NBG interaction predicted via 

docking calculations, and the yellow hyphen represents the interaction obtained via experiment. 
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the hydrogen donor. A sixth HB is established between the        

(-NH) group of the ligand and the (C=O) group of His377, 

with the distance estimated to be approximately 2.9 Å               

(Fig. 3A). The docking simulation via AD4 software gave an 

RMSD value of 0.07 nm (Table 2), leading to a high match 

between the two positions of NBG in the docking and X-ray 

crystal structures (Figure 3B). As a consequence, the GP-

NBG complex structure acquired from the X-ray 

crystallization and docking simulations has a high degree of 

similarity compared to each other (Fig. 3C). NBG makes a 

total of 12 HBs with GP identified by crystallization [42], 

agreeing with those of Asn284, Glu672, His377, Ser674 and 

Gly675 predicted by AD4.  

      (A) Detailed 3D interaction between the NBG ligand and 

GP protein was obtained via re-docking simulations using the 

AD4 package. The carbon atom of NBG is green, red 

represents the oxygen atom (O), blue is nitrogen (N) and 

hydrogen (H) is white. (B) Match of the ligand NBG in the 

complex 2PRJ attained via X-ray crystal structure and 

docking simulations. (C) Compatibility of ligand NBG from 

X-ray crystal structure (green C atom) and docking 

simulations (pink C atom). The red hyphen represents the 

GP-NBG interaction predicted via docking calculations, and 

the yellow hyphen represents the interaction obtained via 

experiment. 

      Binding poses by GOLD. The interacting                             

conformation between (2S,5S,7R,9S)-8,9,10-trihydroxy-            

7-(hydroxymethyl)-2-mercapto-6-oxa-1,3-diazaspiro[4.5] 

decan-4-one (GL4) and the active site of GPb in the complex 

ID 1HLF [38] predicted by GOLD is shown in Fig. 4. 

Gly135, Leu136, Asn284, His377, Ser674, and Gly675 were 

identified as the GP amino acids interacting with GL4, 

resulting in a total of seven HBs. Two HBs are formed when 

the (C=O) group at C4 of GL4 acts as a hydrogen acceptor 

and the (-NH) groups of Gly135 and Leu136 in the main 

chain act as hydrogen donors. The (-NH-C1) group of GL4 is 

the hydrogen donor, and the (C=O) group of His377 is the 

hydrogen acceptor, resulting in the formation of the third HB. 

The fourth HB is made up of the hydrogen acceptor (-OH-

CH2-C7) and the (-NH) of Gly135. Three HBs are formed 

between the hydrogen acceptors (-OH-C9) and (-OH-C10) 

positions of the GL4 ligand and the hydrogen donors (-NH) 

groups of Ser674 and Gly675, respectively. Because of the 

calculated RMSD value of 0.01 nm, it is obvious that GOLD  

 

 

can highly predict the precise binding pose between GL4 and 

GP (Table 2). Crystallographic studies revealed that GL4 

forms thirteen HBs with GPb [38]. A comparison of the 

interaction of GL4 with GP obtained by GOLD and a 

crystallographic experiment reported a strong match in ligand 

position as well as the same GP interacting amino acids        

(Figs. 4B and C). 

       (A) Detailed 3D interaction between the GL4 ligand and 

GP protein was obtained via re-docking simulations using the 

GOLD package. The carbon atom of GL4 is green, red 

represents the oxygen atom (O), blue is nitrogen (N) and 

hydrogen (H) is white. (B) Match of the ligand GL4 in the 

complex 1HLF attained via X-ray crystal structure and 

GOLD docking simulations. (C) Compatibility of GL4 ligand 

from X-ray crystal structures (green C atom) and docking 

simulations (pink C atom). The red hyphen represents the 

GP-GL4 interaction predicted via docking calculations, and 

the yellow hyphen represents the interaction obtained via 

experiment. 

 
DISCUSSIONS 
 

      The best docking program is a question that is frequently 

asked. Different studies have tried to compare the benefits 

and drawbacks of the software measured against various 

benchmarks, serving as general benchmarks when selecting 

a docking program for a specific application [52-54]. Using 

multiple docking programs is advised to result in a better 

assessment of protein-ligand interactions and more accurate 

pose ranking [55,56]. Scoring functions and search 

algorithms are the two key components of molecular docking 

packages, such as AD4, Vina, mVina, Glide, MOE, and 

GOLD. The scoring function is used to predict the binding 

affinity between a protein and a ligand, while the search 

algorithm is used to find the most favorable orientation of the 

ligand in the binding site. Scoring functions typically 

calculate the protein-ligand interaction energy and consider 

various energy terms such as van der Waals interactions, 

hydrogen bonding, and electrostatic interactions. AD4 uses a 

linear combination of energy terms to obtain the final score, 

while Vina uses a scoring function based on molecular 

mechanics and molecular dynamics simulations. Glide uses a 

combination of molecular mechanics, molecular dynamics, 

and free energy calculations to predict  the  binding  affinity,  
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while MOE uses molecular mechanics calculations. Finally, 

GOLD uses free energy calculations and molecular 

mechanics simulations to predict the binding affinity. The 

search algorithms used in molecular docking packages               

range from simple  heuristics  to  more  sophisticated  global 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

optimization methods. AD4 uses a Lamarckian genetic 

algorithm (LGA) while Vina uses a combined global and 

local search algorithm. Glide uses a grid-based refinement 

method and a Monte Carlo optimization approach. MOE     

uses a modified version of the LGA called  the  Lamarckian- 

 
Fig. 4. Interaction of GL4 ligand in the complex 1HLF. (A) Detailed 3D interaction between the GL4 ligand and GP 

protein was obtained via re-docking simulations using the GOLD package. The carbon atom of GL4 is green, red 

represents the oxygen atom (O), blue is nitrogen (N) and hydrogen (H) is white. (B) Match of the ligand GL4 in the 

complex 1HLF attained via X-ray crystal structure and GOLD docking simulations. (C) Compatibility of GL4 ligand 

from X-ray crystal structures (green C atom) and docking simulations (pink C atom). The red hyphen represents the GP-

GL4 interaction predicted via docking calculations, and the yellow hyphen represents the interaction obtained via 

experiment. 
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Genetic Algorithm with Eigenvector Tracking (LGA-ET). 

GOLD uses a combination of a genetic algorithm, stochastic 

search, and dynamic programming to generate its predictions 

[57]. Each of these packages has its own strengths and 

weaknesses and is suited for different types of molecular 

docking applications.  

      Vina has been accessible since 2010, whereas AD4 was 

made public in 2009, and nowadays, both are frequently 

utilized because they are Windows-friendly approaches. 

Several strong inhibitors that bind to peptides, proteins, and 

genes were found thanks to the work of AD4 [58,59]. Vina is 

quite simple to use and has gained more acceptance than AD4 

in recent years because Vina was found to be more reliable 

than AD4 in determining the ligand-binding affinity [60]. 

Due to its powerful computing capabilities, Vina has been 

used to predict the binding pose of big substrates to protein 

targets [61,62] as well as to estimate the binding affinities of 

small compounds to biomolecular targets such as peptides, 

proteins, and genes [63,64]. Nevertheless, Vina results in a 

high docking success rate but a low correlation coefficient 

between predicted and experimental binding affinity [65], 

hampering the ranking of the ligand-binding affinity. 

Therefore, mVina with experimental parameter correction 

was established to improve the ability to rank binding affinity 

[16]. 

      MOE and GOLD tend to have a slight edge in terms of 

accuracy compared to Glide, but the difference can vary 

depending on the specific application. MOE and GOLD are 

known for their advanced features for handling flexible 

ligands and proteins, making them a good choice for 

applications where ligand flexibility is important. Glide's 

grid-based refinement method may not be as effective in 

handling flexible systems but is still capable of handling 

small to medium-sized systems. MOE, GOLD, and Glide are 

all user-friendly interfaces with visualization tools. 

Previously, MOE was believed to be one of the most user-

friendly platforms with a wide range of tools beyond docking 

[57].  

      It is no doubt that docking calculations have helped to 

significantly cut down costs and time in new drug research. 

However, molecular docking has limitations, just like any 

other technique. Although there are many reliable docking 

programs available, it should be noted that not all docking 

algorithms are appropriate for  every  system [66]. Here, we  

 

 

carried out re-docking of 23 GP inhibitors identified using 

AD4, Vina, mVina, Glide XP and SP, MOE, and GOLD 

approaches. A comparison of the outputs indicates that, 

except for GOLD, six other software packages produce 

reasonable binding affinities for GP ligands. In particular, 

MOE possessed the highest precision calculation of the 

ligand-binding affinity. However, this package totally failed 

to produce the proper binding structure for GP ligands.       

Although all four docking techniques including AD4, Vina, 

mVina, and GOLD provide high docking success rates, 

GOLD outperforms the other three methods. Nevertheless, 

GOLD was unable to estimate the proper binding free energy 

of GP ligands. Additionally, the AD4, Vina, mVina, and 

GOLD packages can generate the ligand binding pose that 

well matches the crystal structure obtained by practical 

experiments. The input structure is close to the experimental 

structure, and the simulation time of MD is short, rapidly 

bringing the system to equilibrium. 

      The results obtained in this study will be the basis for 

choosing a suitable support tool in the screening of potential 

compounds for GP, the T2D treatment target. Natural 

compounds provide a wide range of structures for the 

discovery of novel and effective GP inhibitors. Functional 

foods and pharmaceuticals are also developing rapidly with 

computer assistance in the process of finding new drugs for 

T2Ds. Thanks to the structural flexibility of GP, the five 

docking techniques have been found to have advantageous 

effects in ligand library screening. Furthermore, the design of 

structure-based drugs that target allosteric sites such as GP is 

challenging, but using a docking method with a high success 

rate is an important basis for taking the next steps in the new 

drug discovery process. 

 
CONCLUSION 
 

      This study marks a significant stride in the search for 

effective GP inhibitors by offering a detailed comparison of 

seven docking software tools: AD4, Vina, mVina, SP, XP, 

MOE, and GOLD. It's a pioneering effort to evaluate such a 

diverse array of software specifically for GP inhibitors. Key 

findings include MOE's high precision in binding energy 

calculations, with the lowest RMSE, counterbalanced by its 

failure to accurately predict ligand-binding poses. In contrast, 

GOLD, despite its worst precision in binding energy with the  
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highest RMSE, excelled in ligand-binding pose prediction 
with the best docking success rate. Other software packages 
like AD4, Vina, and mVina showed balanced performance in 
both precision and docking success rates, with moderate 

RMSE and success rates. SP and XP, however, did not 
exhibit notable performance in either metric. 
      The findings highlight the criticality of choosing the right 
software aligned with the specific goals of ligand library 
screening. MOE is ideal for projects where binding energy 
precision is vital, while GOLD is preferable for accurate 

ligand positioning. For a more balanced approach, AD4, 
Vina, or mVina are recommended. This study not only aids 
in the strategic tool selection for GP inhibitor screening but 
also paves the way for faster development of new T2D 
therapies. 
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