
Regular Article     PHYSICAL 
                                      CHEMISTRY 

                                                                                                                                                                                              RESEARCH 

                                                                                                                                                                                                       Published by the 
                                                                                                                                                                                                                 Iranian Chemical Society 
                                                                                                                                                                                         www.physchemres.org 
                                                                                                                                                                                        info@physchemres.org 
 
Phys. Chem. Res., Vol. 2, No. 1, 90-95, June 2014. 
DOI: 10.22036/pcr.2014.4560 

 
Thermodynamic Properties of the Ionized Gas 3He 

 
G.H. Bordbara,b,*  and N. Mashayekhizadeha 

aDepartment of Physics, Shiraz University, Shiraz 71454, Iran  
bCenter for Excellence in Astronomy and Astrophysics (CEAA-RIAAM)-Maragha, P.O. Box 55134-441, Maragha 55177-36698, Iran 

(Received 29 July 2013, Accepted 15 January 2014) 
 
 Thermodynamic properties of singly ionized gas 3He at finite temperatures have been investigated using the second quantization 
method. Calculations have been done for a quasi-neutral system in the temperature range 30000-40000 K. We have used the first order 
perturbation method to calculate the interaction energy. The free energy, specific heat and pressure have been computed.   
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INTRODUCTION 
 
 At the present time the importance of study of various 
properties of ionized gases has considerably increased. 
Because of their sizable temperature and density range, 
ionized gases find applications in many fields of research, 
technology and industry. The quantum statistical mechanics 
of dense ionized gases has been studied intensively [1-3] 
and numerous theoretical developments have appeared 
which can significantly improve the calculation of 
thermodynamic equilibrium compositions and properties of 
strongly ionized gases. Thermodynamic properties of fully 
or partial ionized gases have been investigated by 
application of several methods and considering different 
conditions [4-10]. 
 Helium is of special interest physical system from both 
experimental and theoretical points of view. Helium atom as 
the simplest many-electron system and one of the lightest 
elements, provides a lucid way for testing the quantum 
statistical theories of matter. Thermodynamic treatment of 
helium makes it to be exploited in a number of high-
technology applications. Prior calculations of the 
thermodynamic properties of helium have been carried out 
by several investigators using a variety of models [11-16].  
 Helium gas, as the most inert among the inert gases has 
the highest ionization potential (24.587 eV)  and  the  lowest 
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polarizability (0.205 A-3) [17] of all chemical elements. The 
interest in 3He+

 is strongly related to the "hot" topic of 
helium clusters and super fluid helium droplets. 3He+

 was 
first observed in 1968 by Patterson [18]. It has been the 
subject of numerous theoretical studies [19-37]. Very 
recently, Eisazadeh-Far et al. [38] have calculated the 
thermodynamic properties at high temperatures using 
statistical mechanical methods over the temperature range 
300-100000 K.  
 In this paper we carry out a detailed study of the 
thermodynamic properties of ionized gas 3He using the 
second quantization method. The formalism of method 
reformulates the schrödinger equation of system in a way 
that greatly facilitates solving it for an interacting many-
body system, directly. Our calculations is made over the 
temperature range 30000-40000 K. Here we calculate some 
properties of system such as the free energy, heat capacity 
and pressure. In the next two sections, we describe the 
details of the second quantization method for computing the 
internal energy of dense ionized gas 3He. The section 3 is 
concerned with the obtained results and corresponding 
discussions. Summarizing conclusions are expressed in the 
last section.  
 
THE SECOND QUANTIZATION METHOD 
 
 To study the energy of ionized gas 

3He, we consider a 
quasi-neutral   system,  containing  electrons  and  ions  with  
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equal number density ( N

V ). Here, the sum of kinetic and 
potential energies of the electrons system and the ions 
system are treated independently, and an independent term 
is also considered due to the interaction between these two 
systems. The Hamiltonian of the system is written as 
follows:  
 
 el ion el ionH H H H    , (1) 

 
where elH  and ionH  are single-particle kinetic operator and 

two-body interaction operator for electrons and ions, 
respectively. el ionH   denotes interaction operator between 

electrons and ions. Assuming the interaction between 

charged particles to be of Debye form 2 rij

ij
ze e

r


, in which 

μ is the screening length parameter, the Hamiltonian 
becomes:  
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where m and M are masses of electron and ion, respectively.  
The second quantization method involves using the so-
called creation and annihilation operators, which create and 
annihilate particles in a specified single-particle state. It can 
be seen that the anti-symmetry property of fermions 
manifests itself in characteristic anti-commutation relations 
obeyed by these operators. In term of creation and 
annihilation operators, the expression for the one-body and 
two-body operators in the second quantization formalism 
are given by [39],  
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The advantage of this representation is that it can be  applied  

 
 
for both bosons and fermions. Using Eq. (3), the individual 
terms of the Hamiltonian (Eq. (2)) are easily rewritten in the 
second quantization formalism,  
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where k and K are the wave vectors of electrons and ions 
respectively.  
 In order to calculate elH , it is needed to get the matrix 

elements given in Eq. (4). Since the periodic boundary 
conditions give the current carrying eigenstates being well 
suited for the description of transport phenomena, the 
following single particle wave function is considered as the 
single-particle basis states,  
 
 1 ik re r k

V       (7) 

 
Here, using the above single particle wave function, the 
mentioned matrix elements can be computed,  
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Substituting   Eqs. (8)   and  (9)   in   Eq.  (4)   leads   to   the 
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following relation for elH ,  
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                                                                                     (10) 
 
where 1 3q k k 

 
. In above equation, †ˆ a an    is 

called number operator. In order to find the expectation 
value of elH , we consider it as two different parts, 

elH kin pot< > E E   which are related to the kinetic and 

potential energies, respectively. The kinetic energy kinE  
and potential energy potE  are as follows,  
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Clearly, the ground state for N electrons in occupation 
number representation, FS>, is obtained by filling up the N 
states with the lowest possible energy. Note that the density 
dependence of kinetic energy, 2 2

3 3( )kinE exp   , in 

comparison with that of potential energy, 
22
3( ) ( )e

pot dE exp    , shows that the system actually 

serves as a starting point for a perturbation expansion. Here, 
the first order calculation is being considered in the 
thermodynamic limit such that the number density (ρ) stays 
fixed. Here, we note that the procedure of calculation of the 
expectation values of ionH  and el ionH   is the same as done 

for that of elH .  

 Now by calculating the total energy of the system (E), 
and considering the entropy of system by  

 
 
 
 
 
 
 
 
 
 
 [ ( ) ln ( ) (1 ( )) ln(1 ( )]B

k
S k n k n k n k n k       (13) 

 
Where n(k) is Fermi-Dirac distribution function [39], the 
free energy of the system can be determined as follows  
 
 A = E – TS.                                                               (14) 

 
Finally, the thermodynamic properties of ionized gas 3He 
can be obtained.  
 
RESULTS AND DISCUSSION 
 
 To study the thermodynamics of ionized gas 3He in more 
details, several thermodynamic properties have been 
calculated. We performed second quantization formalism 
for number density (ρ) ranging from 4 × 1021 to 1.4 × 1022 
cm-3 at different values of temperature, i.e. T = 30000-40000 
K. We start by presenting our results for the free energy per 
particle of the gas versus density presented in Fig. 1. As one 
expects by increasing the density (temperature), the free 
energy increases (decreases). According to the second law 
of thermodynamics, the entropy of system is always 
positive. By increasing the temperature, the magnitude of 
second term in Eq. (14) rises and, therefore, the free energy 
of system decreases. It can be seen that, the free energy 
shows no minimum (saturation point). We readily observe 
that at high densities the curves of different temperatures 
merge to each other which implies the trivial influence of 
temperature on free energy as well as the internal energy at 
this region. The figure shows that the free energy at T = 0 K 
varies more slowly than that at finite temperatures.  
 The specific heat of the gas can be obtained by 
differentiating internal energy with respect to T, keeping N 
and V constant. Figure 2 shows the specific heat versus 
temperature for two  different values  of  density.  It  is  seen 

1 2
3 11 1 2 2 4 1

31 2 4

2
†† † †

1 1 2 2 3 3 4 4 2 12
1 2

 

       
    

      
  

 
ijr r r

ik rik r ik r ik r

ij

e e ek k k k dr dre e e e
r V r r

 
 

1 3 2 4 1 2 3 4

2

2 2
4 2

4
mbda k k k k

e
V k k  

  
    

   
                                                            (9) 

 



 
 

 

Bordbar & Mashayekhizadeh/Phys. Chem. Res., Vol. 2, No. 1, 90-95, June 2014. 

 93 

 

 
 Fig. 1. The free energy per particle vs. density for  

                     different values of temperature (T). 
 
 

 
Fig. 2. The specific heat vs. temperature for different 

                  values of density.  
 

 
that the specific heat increases monotonically with 
temperature until a specific temperature, then it decreases by 
increasing the temperature, and finally falls to zero. The 
result is the appearance of a maximum in the specific heat of 
system. The peak is an indication of chemical reactions in 
the ionized gas [40]. We also see that by increasing the 
density, the maximum value of specific heat happens at 
higher temperature. The magnitude of specific heat at 
maximum point decreases by increasing density. 
Extrapolating the data in Fig. 2 indicates that CV appears to 
be    approaching   zero   as  0T  .   Therefore,  It  can  be 

 
 

 
 Fig. 3. The pressure vs. density for different values of  

                  temperature (T).  
 
 
concluded that all degrees of freedom are frozen. In other 
word, the vanishing reflects the fact that there are no 
available states in which to deposit energy at low 
temperature, since almost all states below Fermi energy are 
occupied.  
 The pressure of system versus density (equation of state) 
has been plotted in Fig. 3. It is seen that for all temperatures, 
pressure increases monotonically by increasing the density 
and temperature, however, the degree of sloping at which 
the pressure increases is also noteworthy. This figure shows 
that at low densities, the pressure increases linearly as the 
density increases. As ρ increases, the increase of pressure 
becomes smoother for the region 6.2 × 1021 cm-3 < 1.04 × 
1022 cm-3. For densities greater than about  1.04 × 1022 cm-3 

the pressure behaves stiffer. Incidentally, at low densities, 
the difference between the pressure of different 
temperatures decreases. Figure 3 also shows that the 
equation of state of ionized gas 3He becomes stiffer as the 
temperature increases. Our results show that the pressure is 
proportional to temperature, but the relation is not linear as 
classical ideal gas.  
 
SUMMARY AND CONCLUSIONS 
 
 In this article, we have calculated some thermodynamic 
properties for a system consisting of singly ionized 3He 
atoms and their corresponding removed electrons by 
employing   the   second    quantization    method   at   finite 
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temperature. To perform the calculations, we have 
considered the kinetic term, and Coulomb interaction 
between the particles in our Hamiltonian. The calculated 
properties are free energy, specific heat and pressure. It is 
shown that all these quantities are very temperature 
sensitive. For all temperatures and densities, we have seen 
that the main contribution to the internal energy comes from 
the kinetic term.  
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