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 In this short review we look at recent advances in Schramm-Loewner Evolution (SLE) theory and its application to critical phenomena. 
The application of SLE goes beyond critical systems to other time dependent, scale invariant phenomena such as turbulence, sand-piles and 
watersheds. Through the use of SLE, the evolution of conformally invariant paths on the complex plane can be followed; hence a 
geometrical interpretation is acquired for domain walls in critical phenomena. Also advances made on rigorous mathematical proofs in 
particular for the Ising and percolation models are noteworthy, giving rise to rigorous results in critical phenomena. On the other hand; 
application of numerical techniques to SLE for systems far from equilibrium such as surface growth has yielded interesting new results. For 
example it has yielded results regarding the universality class of certain models which have all been thought to belong to the class of 
Kardar-Parisi-Zhang model. In this short review we will present some of these results.  
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INTRODUCTION 
 
 The theory of Schramm-Loewner evolution (SLE) is a 
topic which applies complex analysis to critical phenomena. 
SLEs are random, non-intersecting, planar curves which are 
characterized by certain conformal invariance properties. 
The theory of SLE was created by Oded Schramm                 
[1] and since then it has been a very active field in 
Mathematical Physics. The original motivation for SLE was 
to study in what way critical statistical physics models are 
invariant under conformal mappings. Because of conformal 
invariance, SLEs are the only known continuum limits of 
interfaces in two-dimensional statistical physics. The 
rigorous connection between these random interfaces and 
SLE is the biggest success of the theory. On the other hand 
although CFT offers a reasonable classification of critical 
phenomena in 2d, it is a local explanation and it is not 
geared for study of extended objects such as domain walls. 
These curves  are of 
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great interest as, for example, they describe percolation 
cluster boundaries, level lines of height models and spin 
cluster boundaries. Recently, the scaling limit of the spin 
cluster boundary in the Ising model with appropriate 
boundary conditions has been proven to be an SLE with 
diffusivity = 3 [2].  
 An ever increasing number of 2d lattice models have 
been solved; the techniques have undoubtedly enriched the 
theory of integrable systems, leading to structures such as 
the Yang-Baxter equation and quantum groups                      
[3]. However it is fair to say that these solutions have added 
little physical insight into the nature of the critical state.  
 The striking property of physical systems at criticality is 
Universality. This means that the physical properties of the 
system at criticality are independent of the microscopic 
details. Universality allows one to draw parallels between 
different systems and at the same time classify critical 
points. Theoretically, it leads to the conclusion that the 
behavior near a critical point can be described by just a few 
relevant parameters such as the dimension and symmetry.  It  
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turns out that the critical exponents are largely determined 
by just the dimension of the system, and the dimension and 
symmetries of the order parameter. This justifies the use of 
simple models, for investigation of critical behavior, in 
which all the details of the interactions have been neglected. 
Such a model as an example of its class will yield all the 
necessary exponents. For example, the Ising model, the q-
state Potts models and the O(n) models are examples of a 
class of critical behavior. Note that, by changing q or n 
these models yield various different classes. For instance     
q = 2 yields the Ising class.  
 This is an interesting property of these models, for 
instance in the O(n) model, we can observe the properties of 
many critical classes for different values of n, sometime 
even continued to mathematically unacceptable, but 
physically relevant values such as n = -2 [4].  
 Yet another interesting property of the critical point is 
that the correlation length at this point diverges, therefore 
change of scale should not lead to a new theory, hence the 
emergence of scale invariance. The hypothesis of scale-
invariance led to the development of several techniques for 
the computation of critical exponents and other observables 
near the critical point [5]. In particular one can argue that 
under relatively general conditions such as conservation of 
energy and momentum, unitarity and locality, scale 
invariance leads to conformal invariance [6]. This allows 
the application of the Coulomb Gas method [4], a technique 
which produces exact results for a large class of critical 
phenomena.  
 There is an issue remaining, the physicist intuitively 
believes that there is a connection between the lattice model 
for example the Ising model on the lattice, and a continuum 
(the scaling limit) model, in this example the free fermions 
in 2d. The correspondence is supposed to hold as the lattice 
spacing tends to zero. A crucial question is, whether this 
intuition is correct and a mathematical proof can be 
constructed. Such proofs have proven hard to find. In fact 
only in two special cases of percolation and the Ising model 
do we have a proof [2]. However good news is that 
unexpected things have not happened yet and we do not 
know of any counter examples to this intuition.  
 The goal of this article is to explain SLE to a reader who 
is not deeply interested in the mathematical rigor. We give a 
very brief introduction  to SLE  and  its  connection to  CFT.  

 
 
We will explain how lattice models are connected with 
these ideas. For the sake of brevity we do not go into details 
and the interested reader is referred to original papers and 
many interesting reviews [5,6]. There are other statistical 
models in the picture which are not spin models, such as the 
self-avoiding walk (SAW), growth models such as the 
Edwards-Wilkinson model [7] and the Kadar-Parisi-Zhang 
model [8]. In fact generally speaking iso-height models also 
form loop ensembles [9] which are similar to the Ising and 
the O(n) models, and are thus presumably treatable by SLE 
methods [10]. Interestingly certain phenomena such as 
turbulence and watersheds also yield to the same idea 
[11,12], which we shall briefly touch on. Clearly many 
points are missed or not dealt with to the extent that they 
deserve; but covering the entire field is only possible in a 
long review paper or a book, which is planned for a future 
work. 
 
CONFORMAL INVARIANCE  
 
 Before we go any further let us quickly say what a 
conformal map is and why it is interesting. In Physics 
symmetry plays an important role, in particular space-time 
symmetries. The usual space-time symmetry that Physics 
tends to work with is the Poincare group, consisting of time 
translations, space translations, rotations in space and 
boosts. By Noether’s theorem these symmetries lead to 
conserved quantities; correspondingly; energy, momenta 
and angular momenta and spin. However we can extend 
these symmetries by two other transformations, dilations 
and inversions. Dilations require scale invariance of the 
Physical system and inversions (more often called special 
conformal transformation) essentially transforms r to 1/r. 
This extension leads to d+1 extra generators of the 
symmetry hence the d-dimensional Poincare group is 
enlarged to SO(d,2). Clearly the existence of scale and 
special conformal transformations requires very special 
physical systems. Most systems we know are tied up to a 
particular set of temporal and spatial scales. It turns out that 
systems at criticality are scale invariant. This is a direct by 
product of the Renormalization Group (RG) flow. Under 
these assumptions of RG,  the  coupling  constants g  (which 
may be a finite set) flow with scale : 
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Where the beta functions ; give the rate of change of the 
coupling constants. The fixed points of this flow given by  
β(g*) = 0, turn out to be the critical points of the system. In 
a seminal work Polchinski [13] claimed that scale 
invariance and unitarity lead to conformal invariance, a 
claim which is very close to a proof now [14]. This result 
has various implications one of which being that critical 
behavior may be classified by conformal field theories. The 
restriction of this result to two dimensions brings about a 
wonderful result. At the outset I must add that, knowledge 
of two dimensional scale invariance leading to conformal 
invariance is older and was already known in the paper by 
Belavin, Polyakov and Zamalodchikov [15], where they 
developed two dimensional conformal field theory (CFT). 
They observed that two dimensional conformal invariance is 
very powerful. It is in fact an infinite dimensional 
symmetry. It turns out that conformal symmetry in 2d is 
equivalent to all analytic maps of the complex plane to 
itself. Let D, D′ be domains in complex plane. By 
definition, a conformal map from D to D′ is an analytic 
bijection; f: D → D′, such that; f ′ ≠ 0 for all z  D, and f-1: 
D′ → D is also a conformal map. However this definition of 
a conformal map restricts the possible analytic 
transformation to the Mobius group: 
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Which is in fact the group SL(2,C). However, giving up the 
bijection requirement, we can extend the transformations to 
all analytic function. Therefore if we take the 2d plane as 
our space-time, the symmetries of the system are extended 
to all transformations which preserve the angles. This is an 
infinite dimensional symmetry, hence makes the resulting 
field theory integrable. There is a second point to consider 
that is 2d field theories can be continued to the imaginary 
time, hence 2d CFT may be applied to theories in thermal 
equilibrium, rather than evolving in time. This makes CFT a 
very powerful tool for study of critical phenomena. There 
remains a sneaky obstruction. Quantum field theory is a 
local  theory  by  construction  and is not fit for  the study of  

 
 
non-local objects such as domain walls in critical systems.  
Here comes the power of Schramm-Loewner Evolution, 
when studying domain walls near criticality, the price to pay 
is a little abstract mathematics which we hope the reader 
shows some patience for.  
 
SCHRAMM-LOEWNER EVOLUTION 
 
 Consider a path in the upper half complex plane: 

. We specifically request this path to 

not intersect, but it can touch itself, see figure. The path is 
designed such that it starts at origin and stays in the upper 
half plane for all time: .Loewner [16] 

suggested that there is another way to look at this path. You 
find the conformal mapping that maps   to  in such a 
way that,  is absorbed into the real line.  Then for each t, 
the domain  is simply connected and by the Riemann 
mapping theorem [15] there exists a conformal map 

. Hence Loewner’s claim holds. This 
map is not totally fixed so we can ask it to have good 
properties such as; G(t,0) = 0, it keeps origin where it was 
for all time, G(t,) =  likewise for infinity, G′ (t,0) = 1 
which is consistent with G(0,z) = z that is at zero time you 
just get the identity map. We are still left with some 
freedom expressed as the hydrodynamic limit G(t,z)  z + 
c/z for large  z. The constant c is referred to as the capacity, 
strictly speaking “c” can be a function of time. All this is 
interesting because Loewner showed that G(t,z) satisfies a 
differential equation: 
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where the real function a(t) is referred to as the “driving 
function”. The normalization of G in Eq. (3) is chosen such 
that the capacity is c = 2t. The right hand side of Eq. (3) 
becomes singular at G(t,z) = a(t). Indeed, for each z in the 
closure of the upper-half plane, such that G(t,z) = a(t), we 
observe that G(t,z) is real, and simultaneously, z = (t). 
Therefore the driving function is the image of the curve (t): 
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Thus the mapping G(t,z) maps the tip of the path (t) to a 
point on the real axis. Hence you can stick in any 
continuous driving function and a unique path (t) emerges. 
In this way we obtain a trace as depicted in Fig. 1. However 
a special driving function gives rise to a special Loewner 
evolution. As pointed out by Schramm [1] if you choose 

)()( tBkta  , where B(t) is a standard one dimensional 

Brownian motion, you get a set of paths in the complex 
plane which are conformally invariant, this statement needs 
some clarification. Before doing so let us emphasize that the 
diffusivity coefficient , is a positive real number 0 ≤ , 
for reasons that become clear below. Now G(t,z) is a 
random conformal map, it maps a random subset of the 
upper half plane  onto the whole of the upper half 
plane. The random set Kt is the region of the complex plane 
excluded by the path (t). In the simplest case () the 
trace of (t) does not exclude any region, but as the trace 
becomes more complex for higher values of , the excluded 
region in the complex plane will become more complex. We 
shall refer to this excluded region Kt, as the “hull” of (t). 
We can rewrite Eq. (3) using F(t,z) = G(t,z) - )(tBk : 
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Which is a stochastic differential equation related to the 
Poisson process [17]. This means that the Fokker-Planck 
equation for this process: 
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is readily solved for the stationary distribution to get: 
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but with clear normalizability issues [17]. The probability 
distribution function [F], if it exists, has to be conformally 
invariant, which is the crucial property of Schramm-
Loewner Evolution (SLE).  
 The Schramm-Loewner Evolution (SLE) has two 
important properties, conformal invariance and domain 
Markov  property.  Consider   a   closed   simply   connected 

 
 
 

 
Fig. 1. A non-self intersecting path in the upper half plane. 

 
 
 
domain  such that a path connects two points (a,b) on 
the boundary of  to each other, such that (0) = a, (t) = b.  
Now consider the conformal mapping , 
then we have 0) = , under these conditions the 

conformal measure  remains invariant. On the other hand 
let us break the path at a point c inside the domain , this 
happens at a time  < t. Wenow have the domain /Kt  
which means that the original domain has been polluted 
with the hull of the path Kt . The natural question is how we 
deal with Kt. A reasonable answer is that there exists a 
conformal mapping  such that c and b reside 
on the border of  and Kt is completely absorbed into the 
boundary of . This means that further conditional 
evolution of SLE path within the original domain  
happens within /Kt. 
 
The Slit Map 
 Consider a very simple example where the driving 
function is just a real constant a(t) = ξ. Then Eq. (1) is easily 
solved: 
 

  )(4),( zatztG                                                   (8) 

 
Now apply the boundary conditions such as G(0,z) = z to 
get: 
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In this case (t)  is a straight line leading from point ξ on the 
real line to point (ξ, 2i t ) on the complex plane, see Fig. 2. 
The other properties of this function are: G(0,z) = z it maps 
the tip of the trace (ξ, 2i t ) to point ξ and other properties 
for the function listed above. Strictly speaking the slit map 
is not an SLE but its importance lies in the fact that for very 
short times, it is an infinitesimal segment which can be used 
to approximate a bona fide SLE.  So repeated application of 
the slit map can approximate any SLE trace.  
 
Types of SLE  
 What we have so far introduced here is the chordal SLE. 
Another type of SLE, called the radial SLE, is a path that 
starts on the rim of the unit disc U at z = eiθ, and conditioned 
to end up at z = 0. Then G(t,z): U\(t) → U conformally, 
such that  G(t,0) = 0 and G′(t,0) = et. Loewner’s equation in 
this case is: 
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Here (t) = k B(t), is a scaled Brownian motion. In fact 
this is the version considered by Loewner [16]. At first sight 
it is not obvious how the radial and chordal versions are 
related, however it can be shown that if the trace of radial 
SLE hits the boundary of the unit disc at t = t1, and starts at 
origin at t = 0, is the same chordal SLE conditioned to begin 
at origin z = 0 and end up at ei(t), up to a re-
parameterization of time. This means that the chordal and 
radial versions with the same , are describing the same 
physical problem. Multiple radial SLE paths can start at 
origin and end up on the boundary of the disc. Indeed this is 
Dyson’s    procedure    for   finding   eigenvalues   of   rando 

 
 
 
 
 
m 
 
 
 
 
 
 
 
unitary matrices  [18]. The interesting feature of radial SLE 
is that it can wind around the origin. The winding angle at 
time t is simply (t) - (0), which is a normally distributed 
parameter with variance t. 
 Another variant is the dipolar SLE in which the curve is 
constrained to start at some boundary point and to end up 
within some finite segment of the boundary not containing 
the start point [19]. 
 Another variant of SLE named SLE() [20,21], is 
obtained by changing the driving function from the 
Brownian motion to Wt given by: 
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where the iterated conformal mapping Gt is given by 
Loewner’s equation:  
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This process is well defined for > 0, > -2, and the 
inequality Wt - Gt > 0 is valid for all positive time. 
Obviously for = 0 we recover the original SLE. The 
restriction property set above means that while the SLE 
trace emanates from origin, there is a preferred point on the 
real axis, on the negative real axis in this case which 
corresponds to W0. Such a prefered point can be constructed 
in the spin models by inserting a boundary condition 
changing (bcc) operator [5] .  
 As we have a generalization of CFT to logarithmic CFT  
[22], a generalization of SLE to logarithmic SLE is also 
possible [23,24], where a couple of traces are generated. An 
application of this idea has yet to be found. 

 

 

(  
 

  
Fig. 2. The slit map. The conformal mapping maps the segment to a point on the real axis. Observe that due to   
           the double valued nature of the slit map the point on the real axis maps into two points on the real axis.  
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SOME PROPERTIES OF SLE 
 
 Here we give some of the properties of SLE, the list is 
not exhaustive. The interested reader should refer to the 
original papers for a more complete listing. 
 
Continuity 
 An obvious question arises as to whether the trace 
obtained by the inverse mapping given in Eq.(4) is a 
continuous path. The proof is given in [25] and completed 
in [21]. In other words the following theorem holds: For all 
 ≥ 0 the limit ))((lim)( 1

0 tBkzGt z  
  exists. 

 
Transience 
 The other question that arises is whether the trace 
always ends up in infinity or not? The answer is affirmative 
and was proven in [25]. 
 
Phases of SLE 
 As already mentioned the SLE trace has three distinct 
phases. For 4 >  ≥ 0 the SLE trace is a simple path never 
touching itself and rising up to infinity. For 8 >  ≥ 4 the 
trace is a curve that can touch itself and the real axis, 
eventually ending up at infinity. This means that there exists 
an area, Kt, separated by the trace from infinity, called the 
“Hull”. For  ≥ 8 the path is space filling.  
 
Fractal Dimension 
 It is clear that the SLE trace is a fractal embedded in the 
complex plane; so we could ask what the fractal dimension 
of this path is. This has been calculated by Beffara [26]: 
 

 8
1 kd f 

                                                                            
(13) 

 
The three phases of SLE corresponds to interesting fractal 
dimensions. For 4 >  ≥ 0, (df < 3/2). For 8> ≥ 4 (3/2 ≤  df  
< 2), and the trace becomes space filling for df = 2, 
and equation (11) does not hold for , since it implies a 
dimension greater than 2 for a geometrical object embedded 
in 2d which is impossible.  
 
Duality 
 Another interesting property is SLE duality.  Let us  first  

 
 
define the hull of an SLE. The SLE trace, touching itself 
and the real axis may exclude regions which are not on the 
path but nevertheless are not reachable from infinity. We 
call the union of the set of such point together with the 
curve itself, up to time t, the hull Kt. For large < 8, the 
curve tends towards being space filling, so it continually 
touches itself. Hence the hull contains all earlier parts of the 
path. However, the boundary of Kt, i.e. the boundary of      

 \Kt minus any portions of the real axis, is a simple curve. 
Thus this frontier or boundaries by definition forms a simple 
curve, proven to be another SLE but with diffusivity ’, 
such that ‘ = 16 [27,28]. Thus the self-dual point is = 4, 
corresponding to the iso-height lines of a Gaussian Free 
Field (GFF) or the Edwards-Wilkinson model [7], [29]. 
Later in this review we shall see that the two dual SLE’s 
have the same central charge.  
 
Locality 
 For < 4 we clearly have a self-avoiding trace, but 
clearly not a self-avoiding random walk (SAW). What is 
happening is that the SLE trace exerts a force on itself and 
the boundary of the domain. At first sight this seems a 
mysterious property, but it actually results from the non-
locality of the SLE process. However there is a special 
value of  for which locality exists, i.e. the SLE trace 
evolves independent of its boundary and history so long as 
it does not cross itself. This special value is = 6 [30]. In 
other words critical percolation is represented by a local 
SLE. 
 
Restriction 
 The acute reader would point out that if percolation has 
a locality property then it’s dual i.e. = 8/3, which 
corresponds to SAW should have a special property too, 
though not locality. In fact the trace of SLE8/3 is the 
covering of the hull of SLE6. To explain, sacrificing 
mathematical exactitude; consider the mapping which maps 

 \K to :  
 
                                                             (14) 
 
This is in fact what a Loewner mapping does to the Hull of 
an SLE trace for  > 4, in particular also true for  = 6. In 
this section I shall restrict myself to saying K only for = 6.  
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Now define a new mapping (z) = GK(z) - GK(0). This 
mapping clearly maps the upper half plane  \K onto itself 
such that Φ(0) = 0. Now if the trace (t) never hits K, then 
so is true for *(t) = Φ((t)). In other words , * have the 
same distribution. It can further be shown that [31]: 
 
                                                 (15) 
 
The two properties of locality at = 6 and restriction at = 
8/3 can be stated as below, sacrificing mathematical 
exactitude. Let U be a subset of , connected to the x axis, 
such that the trace (t) starts outside U. The locality property 
(= 6) means that the probability ensemble of (t) is 
indifferent to U. So if U is removed by a conformal 
mapping the probability of (t) will remain untouched. The 
restriction property (= 8/3) means that if (t) does not hit 
U, it will not hit U in any conformal mapping of .  
 
CONNECTION WITH CONFORMAL FIELD 
THEORY 
 
 At criticality, we expect a physical system to have 
conformal invariance. This seems to be a very deep property 
of physical systems that at scale invariant points (given 
other properties such as unitarity and Poincare invariance) 
they become conformally invariant [32]. In two dimensions 
this property is particularly potent since 2d Conformal Field 
Theory (CFT) is solvable  [15]. The interested reader may 
consult many well written reviews and books on this 
subject, for example [33]. Here I wish to avoid reviewing 
CFT for the sake of brevity. Instead I shall use what is 
needed from CFT economically. The power of CFT is in the 
fact that it infers things on the theory just from 
infrastructure without the need to cite a particular 
Hamiltonian or Lagrangian. This is done by looking at the 
irreducible representations of the Virasoro algebra, namely 
a highest weight state which generates a representation.  
 In two dimensions, conformal transformations of the 
plane translate into holomorphic transformations of the 
complex plane. This is an infinite dimensional symmetry 
group and results in an affine algebra of sl(2,C), namely the 
Virasoro algebra: 
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The real positive number c, is called the central charge and 
is related to the conformal anomaly. There is a similar 
algebra for the anti-holomorphic operators acting on the 
complex conjugates. Hence we have a chiral algebra. 
Unitarity requires cc  . The standard method for building 

representations of the Virasoro algebra is similar to the way 
physicists build representations of the rotation group, i.e. by 
highest weight vectors. 
 Such a state in CFT is called a Primary field. The 
conformal weight of a primary field is solely determined by 
the central charge c. Thus different statistical models are 
classified by different possible values of the central charge.  
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Some of the corresponding critical statistical mechanics 
models are given in Table 1. The interesting range of the 
central charge is 0  c  1, corresponding to minimal 
models, which are CFTs having a finite number of primary 
fields. Clearly both SLE and CFT are describing the same 
physical system at criticality hence they must be  connected.  
In relation to SLE, we can observe that the Fokker-Planck 
equation associated with SLE (Eq. 6), is a level two null 
vector in a Conformal Field Theory. This observation 
implies that we have a primary operator 2,1 and central 
charge: 
 

 k
kkc
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Rational CFTs correspond to central charge being less than 
1 and rational. These CFTs have a finite number of primary 
fields.   Thus   different   values    of   diffusivity  coefficient 

 
         Table 1. Different Critical Models and their CFT  
                        Equivalents 
 

M c Statistical model 

3 1/2 Ising  
4 7/10 Tricritical Ising 
5 4/5 3-State Potts 
6 6/7 Tricritical 3-state 

Potts 
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corresponds to different CFT models, hence to different 
critical points. Note that the central charge vanishes at = 6 
(percolation) or = 8/3 (the self-avoiding walk). 
Corresponding to the limit of q = 1 in the Potts model and    
n = 0 in the O(n) model respectively. Thus there is a 
connection between states of the Hilbert space of the 
Boundary Conformal field Theory (BCFT) and the trace of 
SLE [34].  
The central charge can be re-written as: 
 

 )
4

4
(613

k
kc 

                                                                  
(19) 

 
Indicating that there is a self-dual point at  = 4, c = 1, and 
there is duality between points above and below it.  
 On the boundary we have a bcc operator, which changes 
the boundary condition at the point where the SLE trace 
emanates out. Also on the lattice a bcc operator guarantees 
the passage of a critical boundary. Thus a trace conditioned 
to begin at origin and end point r, is related to the green 
function: 
 

 
hr

ar
21,21,2 )()0(  

                                                   

(20) 

Here h = h2,1: 
 

 k
kh

2
6

1,2



                                                                    

(21) 

 
Such a result is easy to get in CFT but extremely hard in 
SLE.  
 I close this section by stating a dilemma. The CFT 
models referred to here, correspond to rational values of , 
whereas no such constraint from SLE side is necessary. 
What is the root of this constraint from the SLE side, or is it 
simply spurious? These are questions yet unanswered.  
 
LATTICE MODELS 
 
 Let us now look at lattice models in statistical Physics, 
which at criticality are believed to be related to CFT’s. Near 
the critical model the correlation diverges, hence the lattice 
model may be well described by a continuous theory, in this 
case a CFT.  This limit, sometimes referred to as the scaling  

 
 
limit equally corresponds to the limit at which the lattice 
spacing vanishes. In other words the lattice parameter 
relative to the correlation length may be ignored and the 
physical system appears to be a continuum. Hence a smooth 
SLE curve can approximate a random path on the lattice. 
The random path taken on the lattice may be the path 
dividing different domains (a domain wall) or simply a self-
avoiding random path. It therefore becomes a difficult 
mathematical task to prove that the scaling limit of a lattice 
model exists and corresponds to a particular SLE. That such 
a limit exists has been only rigorously proven in two cases, 
the Ising model and percolation [2]. However there is an 
expectation that all the statistical models listed in Table 2 
(and many more) do have a scaling limit. In the scaling limit 
critical phenomena are especially interesting, since they 
exhibit universality. Universality means that many different 
physical models which differ in their microscopic details, 
have the same scaling limit. Thus a very important question 
is to determine what the possible scaling limits are. 
 Essentially what we are aiming at are conformally 
invariant random curves in two dimensions. I shall 
concentrate on a square lattice but in certain cases a 
honeycomb lattice proves to be easier to deal with. A lattice 
domain D is a domain in the usual sense, which can be 
decomposed as a disjoint union of open sets (the usual sets 
are either triangles, squares or hexagons) with area “a2” 
(faces, the area of a face depends on the shape we choose 
but dimensionally it is a2 ), open segments of length “a” 
(edges or bonds) and points (vertices), in such a way that 
each bond belongs to the boundary of two open sets and 
each vertex belongs to the boundary of “n” open edges, 
again n depends on the choice of unit cell in the lattice. A 
path on D is a sequence {s_1…s_n} of bonds starting at a 
vertex s_1, and ending on a vertex s_n. Usually there is no 
break in the sequence, i.e. we have a connected path. 
Because arbitrary domains can be used, statement of 
conformal Invariance is by no means trivial. Specifically we 
are looking for probability measures on these domains, and 
sequences of domains while the meshing “a” tends to zero 
in such a way that the limit exists, is conformally invariant 
and obeys domain Markov property. Only in this way can 
we say that an SLE corresponding to the scaling limit of a 
lattice model has been found.  
 In  Physics  other  criteria  are  added, for example a spin 



 
 

 

Introduction to Schramm-Loewner Evolution and its Application to Critical Systems/Phys. Chem. Res., Vol. 3, No. 1, 1-15, March 2015. 

 9 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
system is defined on the square lattice, and the spins on one 
side of the sequence are positive, whilst they are negative on 
the other side of the sequence. Hence a domain boundary is 
formed. It therefore becomes possible to assign a Boltzmann 
weight Wp to the configuration p, and the partition function 
is determined by the sum:  
 

 


p
pWZ

                                                                    
(22) 

 
If we have a path p, running from r1 to r2, it is tempting to 
associate this path with a Green function. So let 2,1

pW  are the 

Boltzmann weights associated with all the configurations 
with all sequences running from r1 to r2, then: 
 

 





)2()1()2,1(
2,1

rr
W

W
G hh

p p

p p


                                

(23) 

 
The operator h is chosen suitably to create the start and end 
points. The best understood model is the Ising model, which 
at criticality is related to a c = 1/2, CFT. Hence it is 
expected  that  domain  walls  at the critical point of an Ising 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model should correspond to SLE traces with = 3. 
 
The Ising Model 
 Consider an Ising model realized on a honeycomb lattice 
in 2d. (See Fig. 3). At the center of each hexagon we have 
placed a spin which can take on values +1 or -1. The indices 
i and j uniquely determine the position of the hexagon on 
the plane. The Ising Hamiltonian is given by: 
 

 
 




klij

ijklij ShSSJH
,                                              

(24) 

 
The sum is over all neighboring spins, the symbol <ij,kl> 
means sites which are neighbours to each other, here six for 
the hexagon. There is an applied magnetic field h, as well.  
 Interpret the bottom of the lattice as the real x axis, and 
here we impose a change of boundary condition using a bcc 
operator. This forces the start of the SLE path on the real 
axis (or origin). The path then will go up keeping positive 
spins on the left and negative spins on the right. 
Alternatively this is truly a domain wall on the dual 
triangular lattice. The SLE trace is the continuum limit of 
such a trace at the critical coupling of the Ising model.  

Table 2. The Values of Diffusivity, Central Charge and Fractal Dimension for Various Critical Models in Statistical Physics 
 

 2 8/3 3 10/3 4 24/5 16/3 6 8 

Central 
charge 

-2 0 1/2 4/5 1 4/5 1/2 0 -2 

q 4 0 1 2.63 4 3 2 1 0 

n -2 0 1 1.62 2 1.73 1.41 1 0 

Fractal 
dim. 

5/4 4/3 11/8 17/12 3/2 8/5 5/3 7/4 2 

Model  LERW 
ASM 

KPZ 
SAW 

Ising  
Spin 
Cluster  

3-State  
Potts 

Edwards-
Wilkinson  
GFF 
Kosterlitz-
Thouless 

Dual  
3-State 
Potts 

Ising 
FK 
Clusters  

Percolation 
Turbulence 

Universal 
Spanning 
Trees  
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Fig. 3. Ising model on a Honeycomb lattice, with an SLE  
            trace  running  from  the  bottom  to the  top edge,  

               separating positive and negative spins. 
 
 
 The loop picture of the Ising model is interesting here. 
Consider the partition function in the limit of vanishing 
magnetic field:  
 

    kliJ kliJ SSJ
eZ ,


                                                      
(25) 

 
This can be expanded in terms of products of spins: 
 
  

ijS klijSSxTrZ )1(                                              (26) 

 
Here = tanh (βJ). The trace of products vanishes unless we 
have a closed loop, so the partition function can be written 
as a sum over loops: 
 

 


g

gLxZ )(

                                                                   
(27) 

 
The sum is over all graphs g, on the Ising lattice which has 
loops, L(g) is the total length of the graph. The loops in g 
are domain walls separating up and down spins. At high 
temperatures  is small, thus x is small, and hence, the mean 
length of a loop is small. As expected in high temperatures 
we do not have large domains. However for small 
temperatures the mean loop perimeter is large, as large 
domains of spins form and magnetization is nonzero. These 
two phases  are  separated  at  xc  where  the  loop  perimeter  

 
 
diverges. Therefore at xc, we expect the loop perimeters to 
correspond to SLE traces. This model corresponds to  = 3. 
 
The O(n) Model 
 The O(n) model is a generalization of the Ising model, 
which has a loop expansion as well. The other interesting 
property of the O(n) model is that it corresponds to many 
critical models at various values of n. The Hamiltonian of 
the O(n) model is given in terms of an n-component vector 
Sa (ij), a = 1 … n. The indices i and j refer to the position of 
the spin on the complex plane. The spins are orthonormal: 
 

 
baba nijSijSTr ,))()((                                                   (28) 

 
No sum over the position identifiers ij. Hence the partition 
function of loops again arises: 
 

 )SSx(1TrZ klS ij
ij


                                                (29)

 

 
Then we have: 
 

 
)()( gc

g

gL nxZ 
                                                            

(30) 

 
Where c(g) is the number of connected components of g. At 
n = 1 we recover the Ising model, and for other values of n, 
just like the Ising model, the loop perimeter diverges above 
some n-dependent value, xc(n), i.e. we have critical behavior 
above xc(n). Some interesting values of n are: n = 2, where 
we have the XY-model. In this case spins can be related to 
heights over a lattice and we obtain the (GFF), where = 4 
(see Table 2). The case n = 0 corresponds to the Self 
Avoiding Random Walk (SAW) with = 8/3, and the case 
n = -2 is the loop erased random walk (LERW) with  = 2. 
In general the interesting cases happen between n = -2 and  
n = 2. There is a relation with : 
 

 
4k),

k
4π(2Cosn 

                                                
(31)

 
 
Note that if we set n = q , we observe a relation with the q-

state Potts model: 
 

 
8k4),

k
4π(4Cosq 2 

                                            
(32) 
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There are two phases in the critical O(n) models, the dilute 
and the dense phase  [35]. This refers to the density of loops 
on the lattice. The two phases correspond to the two phases 
of SLE. So in Eq. (31), we can replace /4 by 4/ Therefore 
the dilute phase holds for < 4 while the dense phase holds 
for > 4. There is no O(n) model corresponding to 0 < < 
2 [6], this observation is of relevance to the watershed case 
discussed at the end of this article [12]. 
 
Potts Model 
 The q-state Potts model is a lattice spin model where the 
spins s(r) take values from the set {1, 2..., q} and have 
nearest neighbor interactions, such that the partition 
function is given by: 
 

 )  RR, S(r)S(r)δJβTr(eZ                                                           (33) 

 
The case q = 2 is equivalent to the Ising model and q = 1 
corresponds to percolation, and for two other integer values 
of q it displays a continuous phase transition: q = 3 and q = 
4. For q > 4 the transition is first order. Therefore, the 
question arises if spin boundaries in the critical Potts model 
with other values of q have SLE as their scaling limit or not. 
The answer is affirmative  [36]. The 3-state Potts model has 
spin boundaries that correspond to = 10/3 (see Table 2). 
There is an obvious difficulty in defining a spin boundary, 
for a three state system, it is no longer unique as it was in 
the Ising spin system. The answer comes in looking at the 
boundary of two spins against the third one. However this 
choice forces fluctuating boundary conditions, which should 
be handled correctly [36]. 
 
PERCOLATION 
 
 In general, percolation refers to the flow of fluids 
through porous media. However an abstract mathematical 
formulation of this problem is in mind here. Consider a 
lattice on the complex plane whose unit cell is a hexagon. 
Color each hexagon randomly white or black. Set the 
probability of being white as p. Ask at what “p” do I see a 
globally connected cluster connecting the bottom and top of 
the lattice. For infinitely large lattice, this defines the critical 
percolation problem. The answer in this case is p = 1/2 and 
has a simple proof by Kesten [37]. 

 
 
 This model exhibits a continuous phase transition with 
its own characteristic exponents, the critical behavior of 
percolation is such that the boundary is an SLE trace  = 6. 
The connection between Percolation and SLE6 was proven 
by Smirnov [2]. 
 What makes percolation even more interesting is that it 
corresponds to a c = 0 CFT, i.e. a non-unitary theory with 
logarithmic correlators, and perhaps intimately related to 
disorder. The other peculiar property of percolation is that 
SLE6 is local, i.e. not sensitive to the boundaries. An 
interesting consequence of the percolation-SLE connection 
was the proof of a conjectured crossing formula for the 
probability that in critical percolation a cluster should exist 
which spans between two disjoint segments of the boundary 
of some simply connected region on the complex plane 
[38], giving ground to the use of local operators from CFT 
in percolation theory. 
 The dual of percolation is the Self Avoiding Random 
Walk (SAW), dual to the locality property, SAW exhibits 
restriction property. This property of SLE happens only at 
= 8/3, as explained before. Note that the two values of 
central charge at c = 0 and c = -2 are non-unitary, however 
they are related to very important models, Percolation and 
the Abelian Sandpile Model (ASM).   
 
SURFACE GROWTH AND ISO-HEIGHT 
CONTOURS 
 
 There is another way that we can end up with a random 
ensemble of loops, by looking at the iso-height lines of a 
random height surface. So given a height profile over a 2d 
surface h(x), let us look at the contours h(x) = constant (here 
I shall use x to mean a two component vector). This will 
create a random collection of loops, somewhat like the loop 
models such as the Ising model or the O(n) model. The 
question now is can I find a probability measure over such 
an ensemble. There is a formal answer to this question. 
Given a probability distribution for h P[h] we can form the 
probability distribution of h = Constant; Pc[h] readily by the 
following path Integral:  
 

   c]δ[h[dh]P[h][h]Pc                                             
(34) 

 
A  popular  case   is   that  of  Gaussian  distribution  for  the 
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height: 
 

 }h(k)kkdβexp{ 222α2 P[h]                                          
(35) 

 
 
Where h(k) is the Fourier transform of h(x). Equation (26) 
implies a scaling invariance for h: 
 

 h(x)λh(x) α                                                                       (36) 

 
The symbol  in Eq. (36) should be understood as -has the 
same probability.   
 Identifying  as the Hurst index of the rough surface 
h(x): 
 

 
2αyxh(x)h(y)                                                              

(37) 

 
The obvious example is the GFF, with = 0, corresponding 
to O(2) or the Edwards-Wilkinson model of surface growth  
[39]. The equal height contours correspond to CLE4 [29,10]. 
What has to be clarified here is that actually loop ensembles 
are related to Conformal Loop Ensembles [40]. However 
the mathematical difficulty of these constructs has hindered 
their application to physical systems, therefore many 
authors have used SLE instead. The study of rough surfaces 
using their equal height contours started with [9]. The 
surface defined by h(x) is a fractal embedded in three 
dimensions which fractal dimension 3-. The fractal 
dimension of the contour line, for a Gaussian surface (Eq. 
35) is 3-/2 [9]. The set of lines, perpendicular to the 
contours, in a sense the route a drop of rain would take 
rolling down the hill, is not known, but known to be smaller 
than 3-/2 [12]. Surfaces other than GFF have been studies 
but results are not conclusive yet. For instance the Kardar-
Parisi-Zhang (KPZ) surface seems to belong to the SAW 
class [10]. In the same way one can study actual rough 
surfaces grown in the laboratory. These surfaces are not 
always self-affine, but when they are, they can be good 
candidates for having SLE traces as iso-height contours  
[41]. Equal height surfaces are not the only candidates for 
creating loop ensembles. Another interesting candidate is 
the ensemble created by looking at constant vorticity 
contours in 2d turbulence [11]. 

 
 

 
  Fig. 4. Equal   height  contours  of   WO3   film   on   glass,  
              obtained by Atomic force microscope imaging. The  
               contours correspond to SLE3 [41]. 
 
 
WATERSHEDS 
 
 Watersheds are lines on a topography separating 
adjacent drainage basins. So they are the lines of maximum 
descent and ascent connecting adjacent saddle points and 
peaks, in such a way that a collection of local minima is 
encompassed, so that the overflow of each local minimum 
pours into another local minimum within the same set. 
Watersheds play a fundamental role in water management, 
landslides, and wars. Natural watersheds are fractal [42]. 
Given a landscape, either artificial or real, finding the 
watershed line requires the running of an invasive 
percolation algorithm. It therefore transpires that watersheds 
are indeed the cluster boundaries of invasion percolation. 
Invasion percolation first discussed in [43] was motivated 
by the study of the flow of two immiscible fluids in porous 
media. The mathematical definition of the problem is based 
on a 2d lattice Let us assign a random number, drawn from 
a given distribution on the unit interval [0, 1], to each link in 
the lattice. In initial configuration, the defender forms a 
spanning cluster, while the invader resides entirely in some 
compact region. Starting from such an initial  configuration,  
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the invader grows at each time step by displacing the 
defender along that link on the interface which has the 
smallest value. The boundary forms a fractal with fractal 
dimension depending on the probability distribution of the 
defending links. For a Gaussian df = 1.22. Using this 
method, the fractal dimension was estimated to be 1.10 ± 
0.01 for the Alps and 1.11 ± 0.01 for the Himalayas. 
Indicating a dependence on the Hurst index [44]. 
Furthermore the universality class seems to be related to 
paths in random media [45]. Armed with the machinery of 
SLE, we can observe that in the continuum limit watersheds 
are Schramm-Loewner Evolution (SLE) curves, with = 
1.734 ± 0.005  [12]. This value of diffusivity lies outside the 
observed range (2  ≤ but not necessarily inconsistent 
with the SLE property. It can have two meanings; either 
relation with CFT does not hold or a logarithmic CFT with 
central charge of c = -3.47 ± 0.05 is playing a role. 
 
SUMMARY 
 
 The main goal of this article was to provide a review of 
recent activity in the Schramm Loewner Evolution (SLE) 
and its connections to a variety of models in probability 
theory and statistical Physics. SLE is a one parameter 
family of stochastic processes that produce non-intersecting 
random curves in the plane, in such a way that the 
probability measure for these curves is invariant under the 
analytic maps of the complex plane and has domain Markov 
property. It was introduced by Oded Schramm in a paper 
that appeared in year 2000. He named it Stochastic Loewner 
Evolution, but now it is referred to as Schramm-Loewner 
Evolution. 
 Although the theory of SLE is important in its own right 
within the domain of Mathematics where a proof of the 
continuum limits of lattice models is studied [2], the 
Importance of SLE arises out of it as a tool to study non-
local entities such as domain walls in physical systems near 
criticality. In two and four dimensions, it is now believed 
that critical phenomena are conformally invariant.  In other 
words near a critical point the trace of the energy-
momentum tensor vanishes:  
 

 β(g)T μ
μ                                                                               

(38) 

 
 
Where 

T  is the energy-momentum tensor and β(g) is the 

beta function, giving the rate of change of the coupling 
constant, under scaling. This makes the theory scale 
invariant, hence conformally invariant if some other 
properties hold [14]. Note that the right hand side of Eq. 
(38) has to be understood in a loose way as there may be 
many coupling constant. However CFT is a local theory and 
unfit for study of non-local entities such as domain walls. 
However SLE is related to CFT via its Fokker-Planck 
equation and offers a way of studying domain walls in 
conformally invariant systems. Perhaps the most striking 
success of SLE was in percolation theory, Cardy’s crossing 
formula could be checked [38] [5], and more recently some 
problems of paths on critical percolation cluster were 
addressed [46] [47]. Certain other problems have also been 
addressed by SLE such as; boundaries of zero vorticity [11], 
spin cluster boundaries in a number of models for example 
three state Potts model [36], fractal dimension of watersheds 
[12], random surface structure in Liouville quantum gravity 
[48], classification of random surfaces using their iso-height 
lines [10], this is citing just a fraction of the results.  
 However some problems remain, which can be the focus 
of future work. Domain boundaries are typically loops, 
whereas SLE addresses a path starting from a specific point. 
Making matters more intense, many two dimensional 
models are really loop models. Meaning that the Boltzmann 
weights distinguish configuration of loop soups, for instance 
in the O(n) model [4]. This means that we should directly 
treat loops rather than paths. A mathematical theory, 
Conformal Loop Ensembles (CLE) dealing with loops has 
been developed [49], but its non-local structure has made it 
difficult for application to physical problems, this is indeed 
an avenue of future development. Another direction for 
future work may be offered by systems near criticality, 
hence an off-critical SLE becomes important [50] [51]. 
However the theory of off critical SLE needs some more 
development and more interesting results will come out in 
this field.  
 Finally, there exist other growth problems which can be 
generated by iterated analytical complex maps. Another 
well-known problem of this type is the diffusion limited 
aggregation (DLA) [52]. The resultant highly branched 
structures are very similar to those observed in viscous 
fingering experiments [53] where  one  fluid  is  forced  into  
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another in which it is immiscible. Hastings and Levitov [54] 
have proposed an approach to this problem using iterated 
conformal mappings. It is an interesting as yet open 
question does there exist a stochastic differential equation 
for generating these kinds of growth.  
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