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 The compressibility factor of nonassociated chain molecules composed of hard convex core Yukawa segments was derived with 
SAFT-VR and an extension of the Barker-Henderson perturbation theory for convex bodies. The temperature-dependent chain and 
dispersion compressibility factors were derived using the Yukawa potential. The effects of temperature, packing fraction, and segment 
number on the compressibility factor were investigated for chains of the prolate sphereocylinder segments. A comparison of hard core 
Yukawa chain compressibility factor values and hard chain compressibility factor values showed that the type of interaction potential has 
more effect on those chain molecules with higher segment numbers. The results demonstrated that in reduced temperatures 1.4 and 2.4, the 
Yukawa chain of the compressibility factor is insensitive to temperature, while the dispersion term of the compressibility factor changes 
remarkably with the temperature. The derived equation of state can fairly predict the SAFT-VR results of the hard sphere core chain 
molecules in the limit of α = 1. 
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INTRODUCTION 
 
 The thermodynamic properties of chain-like molecules, 
such as proteins and polymers, are of industrial and 
scientific interest [1-5]. The equilibrium properties of fluids 
are related mainly to the structure of the constitutive 
components of fluids and their mutual interaction. The 
equations of state describing such systems have great 
importance both experimentally and theoretically. 
 Numerous equations of state have been developed for 
accurately determining the thermodynamic properties and 
phase equilibria of complex fluids at the molecular level [6-
10]. The thermodynamic perturbation theory (TPT) of 
Wertheim [11,12] in 1984 introduced the statistical 
associating fluid theory (SAFT) that, because of its 
predictive accuracy and firm molecular foundation, rapidly 
superseded well-established chemical engineering equations 
of  state.  The   SAFT   approach  describes  the  fluid  phase  
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equilibria of a wide variety of non-polar and polar fluids 
and their mixtures [13]. Many extensions of the SAFT are 
presented; among them, the SAFT-VR is a general version 
for chain molecules formed from hard core monomers with 
an arbitrary potential of variable range (VR) [14]. In the 
general form of the SAFT equation of state, the reduced 
residual Helmholtz energy, Ares is usually defined as a series 
of terms approximating different free energies resulting 
from molecular interaction as, 
 

 

res mono chain assocA A A A
NkT NkT NkT NkT

  
                                       

(1) 

 
The superscripts on the right hand side of Eq. (1) refer to the 
monomer, the chain, and the association contributions of the 
Helmholtz free energy, respectively. 
 According to the first order Barker-Henderson 
perturbation theory [15], the monomer Helmholtz free 
energy can be presented as, 
 
 Amono = AHS + βA1                                                           (2) 
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where AHS is the hard sphere Helmholtz free energy and A1  
is the perturbed Helmholtz free energy due to the dispersion 
interactions.  
 The chain Helmholtz free energy is calculated by [16],  
 

 
 1 ln ( )

chain
MA m y

NkT
  

                                               
(3) 

 
where m is the number of monomers per chain and yM (σ) is 
the monomer-monomer background correlation function 
evaluated at the hard-core contact. The background 
correlation function is related to the pair correlation 
function as, 
 

 
( )( ) ( )

MM U My e g                                                 (4) 

 
where gM (σ) and UM (σ) are the monomer pair correlation 
function and the monomer intermolecular potential at the 
hard-core contact, respectively. 
 Since the structure of the hard sphere reference system is 
well-known, and the structure of a fluid is mainly related to 
repulsive interactions, the monomer background correlation 
function at hard-core contact is usually obtained by its hard 
sphere value, 
 

 yM (σ) = yHS (σ)                                                              (5) 
 
The analytical expression for yHS (σ) is obtained by the hard 
sphere pair correlation function at contact, gHS (σ), by the 
similar relation as Eq. (4). 
 The compressibility factor of the nonassociated chain 
molecules is obtained using Eq. (1) as, 
 
 Z = 1 + ZHS + Zchain + ZDisp                                                (6) 
 
where ZHS, Zchain and ZDisp are the hard sphere, the chain, and 
the dispersion compressibility factors, respectively. The 
compressibility factor of the chain molecules of the m-hard 
sphere segments, ZHSC, can be evaluated by ZHS and Zchain as, 
 

 
ln ( )( 1) 1

HS
HSC HS gZ mZ m 




 
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(7) 

 
The hard sphere term of  the  compressibility  factor  for  the  

 
 
m-segment chain molecules, ZHS, is usually given by the 
Carnahan-Starling equation of state as, 
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(8) 

 
where  = mσ3/6 is the packing fraction. 
The second term in the right hand side of Eq. (7) is the 
chain contribution of the compressibility factor, Zchain. 
 In spite of the extensive application of the hard sphere 
model in theoretical studies of fluids, most real molecules 
are neither spherical nor spherically symmetric. Therefore, 
the equations of state reflecting this anisotropy are of 
interest. The equations of state derived by T. Boublik [17-
19] and M. J. Maeso et al. [20] are examples of such 
equations. In their works, a nonspherical geometry 
parameter was used to account for the better representation 
of the geometry of many real molecules. 
 Sadus [21] formulated a hard convex body chain 
(HCBC) compressibility factor using the Boublik hard 
convex body (HCB) compressibility factor [18]. According 
to this formulation, the compressibility factor of a chain 
molecule composed of m hard convex body (HCB) 
segments, ZHCBC, can be written similarly to Eq. (7), using 
the HCB compressibility factor, ZHCB and the HCB site-site 
correlation function at contact, gHCB (σ), namely: 
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(9) 

 
where the HCB site-site correlation function at contact, gHCB 
(σ), is given by [22],  
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(10) 

where SR is the ratio of the actual surface area of HCB, S
HCB, 

to the surface area of the equivalent hard spheres, SEHS, 
which occupy the same volume as the HCB, 
 

 

HCB

R EHS

SS
S


                                                                 

(11) 

Equation (10) is converted to the Percus-Yuvick relation for 
the hard sphere pair correlation function at contact by SR = 
1. 
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 The HCB compressibility factor, ZHCB, can be accurately 
obtained from the Boublik equation of state as [17],  
 

 

2 2 2 3

3
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(1 )
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

                   
(12) 

 
where α is a parameter for deviation from spherical 
geometry and given by, 
 

 3
RS
V

 
                                                                          

(13) 

 
where R, S and V are the mean radius, surface area, and 
volume of a convex body, respectively. The value of α for 
the hard sphere is equal to one. 
 In Ref. [21], the chain molecules were considered 
completely hard and composed of HCB monomers, while in 
real fluids monomers have only hard cores which can 
interact with each other through an appropriate dispersion 
force. Therefore, in this work, the compressibility factor of 
nonassociated chain molecules composed of hard convex 
core Yukawa segments has been derived with the SAFT-VR 
description using an extension of the Barker-Henderson 
perturbation theory for convex bodies. It was considered 
that monomers have hard convex cores and can interact with 
each other through the dispersion potential of variation 
range as a perturbed interaction potential. Therefore, the 
monomer Helmholtz free energy term is derived for the hard 
convex core Yukawa segments using a perturbation theory 
for convex bodies [23]. The chain Helmholtz free energy 
term is calculated. The resulting equation of state is 
investigated in different temperatures, segment numbers, 
and packing fractions and finally, the role of dispersion term 
for prolate spherocylinder segments is investigated. 

 
MONOMER TERM 
 
 According to the SAFT-VR, the monomer segments 
Helmholtz free energy, Amono, is given by, 
 

 
2

1 2
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 
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(14) 

 
where β = 1/kT and A1 and A2 are the  first  two  perturbation  

 
 
terms associated with the attractive well. 
 In this study, it was assumed that the chain molecules 
had been composed of the convex segments interacting by 
the hard core Yukawa potential. The monomer Helmholtz 
free energy of the convex monomer segments, AHCBmono, can 
be written by the first perturbation term as in Eq. (14) as, 
 

 
1

HCB mono HCBA Am A
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
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(15) 

 
where AHCB is the HCB Helmholtz free energy of the hard 
core convex monomers and A1 is the perturbed Helmholtz 
free energy due to the dispersion forces between the 
monomers.  
 The dispersion Helmholtz free energy can be calculated 
from the first order perturbation theory of Barker-
Henderson as, 
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0
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NkT



 

                                             
(16) 

 
Equation (16) was rewritten for the convex bodies by 
Boublik [23] as, 
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(17) 

 
where s denotes the distance between surfaces of the convex 
bodies of interacting molecules, U(s) is the dispersion 
potential between two convex bodies in the distance s, and 
gHCB(s) is the pair correlation function of the convex body at 
distance s. The mean surface area Si+s+i of a pair of 
molecules is given by the motion of the center of gravity of 
one convex molecule around the second one keeping a 
constant surface-to-surface distance s. The mean surface 
area with a surface distance s can be expressed in terms of 
the reduced parameters R´ = R/σ, S´ = S/σ2, and the reduced 
distance z = s/σ as, R/σ 
 

 
2 2 24 4 2( / 4 )i s iS z R z S R                          

(18)  

 
 Among the analytically solvable models, the hard core 
Yukawa potential is very useful in theoretical studies [24]. 
Because of  its analytical  solution,  the  hard  core  Yukawa  
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potential along with the mean spherical approximation has 
been used in many applications [25,26]. The different 
properties of the chain molecules, such as proteins and 
polymers, have been frequently investigated by the Yukawa 
potential [27-30]. It is expected that the application of the 
hard core Yukawa potential, as a dispersion potential to the 
chains composed of nonspherical segments, will be a proper 
choice and will give logical results. Thus, to calculate the 
dispersion term of the Helmholtz free energy, the hard core 
Yukawa potential was used. The hard core Yukawa 
potential is given as, 
 

 

                                           s
( )
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
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

 
                                    

(19) 

 
where ε is the depth of the potential minimum, σ is the 
distance that the potential is zero, and λ is a quantity that 
determines the range of potential. 
Replacing the Yukawa potential in Eq. (17) results in: 
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                                                                                          (20) 
 
where T* = kT/ε is the reduced temperature, t is a new 
variable which is defined as t = z/c, and c is a dimensionless 
quantity  defined as the ratio of thickness (ζ) to σ/2. To 
calculate the integral in Eq. (19), it is necessary to know the 
pair correlation function of convex body, gHCB (cσt). To 
determine gHCB (cσt), the definition of the total correlation 
function of convex body, hHCB (cσt), was used as, 
 
 hHCB (cσt) = gHCB (cσt) - 1                                           (21) 
 
The total correlation function of a convex body is given 
with a good approximation [23] by, 
 

 
( ) ( )
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(22) 

 
According to this approximation, the total correlation 
function of a convex body, hHCB (cσt), can be approximated 
by  the correlation  function  of  an  equivalent  hard  sphere,  

 
 
hEHS (x), which can be calculated by the Percus-Yuvick 
relation for the total correlation function, hPY (x),  
 

 
(1)( ) ( )
(1)

EHS
EHS PY

PY
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(23) 

 
where hEHS (1) and hPY (1) are their values at contact and x 
is: 
 
 x = 1 + ft                                                                      (24) 

                                                 
that f  has been defined as: 
 

 1 2
f

R



                                                                    

(25) 

 
It has been shown that this approximation works well for 
prolate and oblate spherocylinders [23]. Replacing Eq. (23) 
into Eq. (22) and the result into Eq. (21) gives, 
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Therefore, using gHCB (cσt), given in Eq. (26), the dispersion 
Helmholtz free energy, Eq. (20), becomes: 
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                                                                                          (27) 
 
where x is related to t by Eq. (24). 
 In this study, c was taken as equal to unit for simplicity; 
in other words ζ = σ/2. The mean-value theorem (MVT) 
from the theory of calculus [31] was used to evaluate the 
integral in Eq. (27). The MVT states that if f (x) and h(x) are 
continuous functions in the interval I = [a,b], and h(x) > 0, 
then there is a value ζ  [a,b], such that 
 

 
( ) ( ) ( ) ( )

b b

a a
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(28) 

 
According to MVT, since e-λ(ct-1)/t and gPY (x) are the 
continuous functions in the interval [1,], we can obtain the 
following relation after changing the variable t to x: 
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(29) 
 
 
With a good approximation in the SAFT-VR description, 
the function gPY (ζ,) can be represented by its contact 
value, but evaluated at an effective packing fraction, eff, 
such that, 
 

 ( , ) (1, )PY PY
effg g                                                

(30) 

 
This is justified, since gHS (x) is a decreasing function in the 
interval of values of the mean-value theorem distances ζ, 
even for long-range interactions and for the whole range of 
liquid densities [32]. Thus it can be written as, 
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 Gil-Villegas et al. [32] obtained the dependency of the 
effective packing fraction eff on the actual value of  and 
the Yukawa potential range parameter, λ, as: 
 

 
2

1 2eff C C                                                            
(32) 

 
where C1and C2 are calculated using the Yukawa potential 
range parameter by, 
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(33) 
 
 Therefore, according to the above-mentioned method, 
the dispersion contribution of the monomer Helmholtz free 
energy can be evaluated from Eqs. (29)-(33), and in turn, 
the corresponding compressibility factor from, 
 

 
1Disp AZ

NkT
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
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                                                              (34)       

 
 
Finally, the dispersion compressibility factor, Eq. (34), 
along with the hard convex body compressibility factor, Eq. 
(12), gives the monomer compressibility factor. 
 
CHAIN TERM 
 
 The chain term of the compressibility factor is usually 
calculated by the pair correlation function at contact of the 
hard segments as: 
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(35) 

 
Where ZHSchain is the hard segment chain compressibility 
factor. Similarly, the hard convex segment chain 
compressibility factor, ZHCSchain, can be written using the 
pair correlation function of the HCB as [21],  
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The ZHCSchain can be obtained using the HCB pair correlation 
function, which is given in Eq. (10) as, 
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(37) 
 
This relation is applicable for the chain molecules of convex 
segments that are completely hard. However, for hard core 
convex segments interacting through the dispersion force, 
another relation has to be obtained. Then,  to find a suitable 
expression for the pair correlation function of the hard 
convex core segments, a high-temperature expansion for the 
monomer pair correlation function, gM (r), was used as,               
                                                                                         
 gM (r) = gHCB (r) + βg1 (r) + (β)2 g2 (r) + …            (38) 
 
where g1 (r) and g2 (r) are the correction terms to account 
for the contribution of the dispersion force, and  is the 
potential energy parameter. 
In this work, just the first correction term, i.e. g1 (r), was 
considered in the calculation of gM (r). 
 A closed expression  was  derived  for g1 (σ) based on  a 
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self consistent method for the pressure P from the Clausius 
Virial theorem and the density derivative of the Helmholtz 
free energy as, 
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For extension of Eq. (39) to the HCB, the pair correlation 
functions of HCB were used instead of the hard sphere pair 
correlation function. 
 The following expression was obtained for the monomer 
pair correlation function at contact by replacing the Yukawa 
potential in Eq. (39) and the results into Eq. (38), 
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(40) 

 
The superscript Y denotes the Yukawa potential. Eq. (40) is 
used to calculate the pair correlation function of the hard 
convex core Yukawa bodies by replacing A1 from Eq. (29). 
The chain contribution of the compressibility factor of the 
hard convex core Yukawa body chain molecule was 
calculated using Eqs. (40) and (36). The resulting relation is 
significantly long; therefore, only the final results are 
presented in the next section. 
 It is worthy to note that the final expression for the 
compressibility factor of the chain molecules of hard core 
Yukawa segments, which was calculated using Eq. (6), is a 
temperature-dependent expression. The ability to predict the 
temperature-dependent properties of a fluid is a significant 
advantage for an equation of state. 

 
RESULTS AND DISCUSSION 
 
 In the present work, the compressibility factor of 
nonassociated chain molecules, Z (1), composed of hard 
convex  core  Yukawa   segments   was   derived   using  the 
SAFT-VR and an extension of the Barker-Henderson 
perturbation theory for convex bodies. The derived convex 
body SAFT-VR (CB-SAFT-VR) equation of state for the 
nonassociated chain molecules is given by: 
                                                                                                           
   Z (1) = 1 + ZHCB + ZHCYSchain + ZDisp                                 (41) 

 
 
where ZHCBis the hard convex body compressibility factor, 
Eq. (12), ZHCYSchain is the compressibility factor of the hard 
convex core Yukawa segment chain which can be 
calculated using Eqs. (40), (4) and (3), and ZDisp is the 
dispersion compressibility factor term obtained by Eqs. (34) 
and (29). It should be noted that the nonspherical character 
of segments was considered in the hard convex body, the 
dispersion and chain compressibility factor terms of Z (1). 
 The derived compressibility factor of the chain 
molecules composed of the hard convex core Yukawa 
bodies, Z (1), depends on the molecular shape α, Yukawa 
parameter λ, packing fraction , segment number m, and the 
ratio of the actual surface area of HCB to the hard sphere 
one, SR. The values of R, S, V, α, and SR in terms of the 
ratio of maximum length to breath, γ, are given in Table 1 
for sphere and prolate sphereocylinder bodies [21]. 
 The compressibility factors of the hard convex core 
Yukawa chain molecules of prolate sphereocylinder 
segments, Z (1), in different segment numbers, m, are plotted 
versus the packing fraction in Figs. 1a and 1b for the 
reduced temperatures 1.4 and 2.4, respectively. It is 
observable from Figs. 1a and 1b that, for each segment 
number, m, the isotherms of the compressibility factor 
increase with the packing fraction and decrease with 
temperature. 

The compressibility factors of the prolate 
sphereocylinder segment chain molecules with different 
lengths in the constant segment number and the reduced 
temperature 1.4 are plotted in Fig. 2. It can be seen that the 
compressibility factor increases as chain length increases. 
 To investigate the contribution of the dispersion term on 
the compressibility factor of the chain molecules, Z (1), the 
dispersion term was neglected and the Yukawa potential 
was considered only in the calculation of the chain term, 
ZHCYSchain. In this case, the hard convex segment chain 
Yukawa compressibility, Z (1), can be obtained by, 
 
 Z (2) = 1 + ZHCB + ZHCYSchain                                                               (42) 
 
 The plots of Z (2) versus the packing fraction in the 
reduced temperatures 1.4 and 2.4 and different segment 
numbers are shown in Figs. 3a and 3b, respectively. It can 
be found from Figs. 3a and 3b that the compressibility 
factor  in  each segment  number, m,  has  not changed  with 
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variations in temperature. This affirms that the affects the 
dispersion contribution of the compressibility factor more 
than the chain contribution. In other words, in Eq. (40) for 
gY, the first term is enough for the calculation of the chain 
contribution term compressibility factor. 
 Comparing Figs. 1a with 3a and 1b with 3b shows that 
the dispersion term in Eq. (41)  reduces  the  compressibility 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
factor values of Z (1) with respect to Z (2) because of the 
attractive character of dispersion term. In addition, the 
temperature variation affects only the dispersion interaction 
and, consequently, the dispersion compressibility factor 
term. 
 The effect of potential type on the chain term of the 
compressibility  factor  can  be  found  from  comparing  the  

            Table 1. The Values of  Mean Radius, R, Surface Area, S,  Volume,  V,  Nonspherical  Parameter, α ,  
                           and the Ratio of the Actual Surface Area of HCB to the Hard Sphere One, SR, is Given  for  
                           Sphere and Prolate Spherocylinders   

Shape R S V α SR 

Sphere 
 

σ/2 

 
σ2 

3

6
  1 1 

Prolate 
( 1)

4
   γσ2 

3(3 1)
12

   
2

3 1
 




 
2

3(1.5 0.5)



 

 

             γ is length/breath ratio. 
 
 

 
 
Fig. 1. Z (1) vs. η for chain molecules with a length of 100σ and various prolate sphereocylinder segment numbers:  
           5 (●), 10 (♦), 30 (■) and 50 (▼), in the reduced temperatures (a) 1.4 and (b) 2.4. 
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Fig. 2. Z (1)  vs. η for chain molecules with m = 5 and different chain lengths: 10σ (●), 30σ (▲), 50σ (■) and  
                 100σ (♦), in the reduce temperature 1.4. 
 
 

          
 

Fig. 3. Z (2)  vs. η for chain molecules with a length of 100σ and various prolate sphereocylinder segment numbers:  
            5 (●), 10 (♦), 30 (■) and 50 (▼), in the reduced temperatures (a) 1.4 and (b) 2.4. 
 
 



 

 

 

A Hard Convex Core Yukawa Equation of State/Phys. Chem. Res., Vol. 3, No. 4, 347-360, December 2015. 

 355

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
compressibility factor values [21] of Eq. (9) with Eq. (42),  
Z (2). In the former equation, the chain segments are 
considered hard, however, in the latter the chain segments 
had a hard core with an attractive interaction which is 
defined with the Yukawa potential. The compressibility 
factor of chain molecules of prolate spherocylinder 
segments according to Eqs. (9) and (42) are plotted in Figs. 
4a and 4b for T* = 1.4 and 2.4 and different m, respectively. 
It must be noted that Eq. (9) was compared with Eq. (42), 
since in Eq. (42) the dispersion term is absent as in Eq. (9). 
 It can be seen that the difference between the 
compressibility factors of two models increases as the 
segment numbers increase, but increasing temperature had 
no effect on the difference of the compressibility factors of 
the two models. In other words, the type of potential 
interaction affects more the dispersion term of the 
compressibility factor and also the chain term just in the 
high segment numbers. 
 Since the equation of state, Z (1), is too long, it is hard to 
fit with the experimental data, but it can be tested in the 
limiting value of α = 1. In this limit, the derived equation of 
state must be converted to an equation of  state  for the  hard  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
segment chain molecule of variable range potential which 
has been given by Gil-Villegas et al. Figure 5 comprises our 
results in the α = 1 limit with the results of Gil-Villegas et 
al. [32]. As seen, in this limit two equations of state are 
completely coincidental. Thus, the derived equation of state 
is well able to predict the behavior of the chain of the hard 
sphere segments. 

 
VOLUMETRIC PROPERTIES OF CHAIN 
MOLECULES 

 
 The volumetric behavior of gases (vapors), liquids, and 
solids must be known to calculate; for example, the 
operation of heat engines, industrial chemical processes, the 
action of an explosion, and aerodynamic and hydrodynamic 
effects observed during motion at high velocities. 
Isothermal compressibility, KT, and thermal expansion 
coefficient,  , are two known volumetric properties which 
are often measured and calculated for different fluids. 
 Isothermal compressibility, KT, is the fractional change 
in volume of a system as  the  pressure  changes  at  constant  

   

Fig. 4. The compressibility factor of chain molecules of prolate sphereocylinder segments using the hard chain  
            term,   Eq. (9), (bold symbol)  and  the  Yukawa  chain  term, Z (2),  (no  bold  symbol)  in  the  segment  

       numbers: 5 (circle), 10 (triangle), and 50 (square), and the reduced temperatures (a) 1.4 and (b) 2.4. 
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temperature. The isothermal compressibility of a fluid is 
defined in term of fluid density, as follows:  
 

 

1
T

TP





                                                                    
(43) 

 
Isothermal compressibility is also the reciprocal of the bulk 
modulus, B, of elasticity [33]. The experimental data show 
B  increases by increasing density at constant temperature. 
The reduced bulk modulus, Br, is defined as: 
 

 
1

r
T

PB
RT 

 
                                                                

(44) 

 
The reduced bulk modulus can be given in terms of the 
compressibility factor and the packing fraction as: 
 

 
r

ZB Z 



 
                                                            

(45) 

 
 Thermal expansion coefficient, α, is the fractional 
change in the volume of a system with temperature at 
constant pressure [34]. Temperature is a monotonic function 
of the average molecular kinetic energy of a substance.  The  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
kinetic energy of its molecules increases, when a substance 
is heated. Thus, the molecules begin moving more and 
usually maintain in a greater average separation. Thermal 
expansion coefficient is given in terms of density as, 
 

 

1

PT





                                                                    
(46) 

 
The subscript p indicates that the pressure is held constant 
during the expansion. The reduced thermal expansion 
coefficient can be given in terms of the compressibility 
factor and the packing fraction as: 
 

 
r

r

ZZ T
T

B


   
                                                        

(47) 

 
 If an equation of state is available, it can be used to 
predict the thermal expansion coefficient and the reduced 
bulk modulus values at all the required temperatures and 
pressures. 
 Therefore, in this study, the reduced bulk modulus and 
the reduced thermal expansion coefficient of the 
nonassociated  chain  molecules  composed of  hard  convex  

 
 

Fig. 5. Comparison of the compressibility factor of chain molecules calculated in this work (line) in the α = 1  
               limit and m = 10 with the results of Gil-Villegas et al. [32] (●) in the reduced temperature 1.4. 
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core Yukawa segments have been calculated by using Z (1). 
Figures 6a and 6b show the plots of the reduced bulk 
modulus and the reduced thermal expansion coefficient of 
the nonassociated chain molecules versus the packing 
fraction in different segment numbers, respectively. 
 The variation of the reduced bulk modulus and the 
reduced thermal expansion coefficient with the chain length 
in a constant segment numbers (m = 5) has been also shown 
in Figs. 7a and 7b, respectively. 
 From Figs. 6 and 7, it is found that the calculated 
reduced bulk modulus increases and the calculated reduced 
thermal expansion coefficient decreases by increasing the 
packing fraction. This is consistent with experience. It can 
be also seen that both Br and αr decrease as segment 
numbers increase in a constant chain length. It must be 
noticed that in spite of increasing Br by the chain length, the 
variation of αr with chain length is very small. 
 
CONCLUSIONS 
 
 The   segment   type   of   chain   molecules   are  usually  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
considered spherical, but in most molecules they are neither 
spherical nor spherically symmetric. Therefore, finding a 
general equation of state that can be applied to the chain 
molecules of spherical or non-spherical segments has a 
particular importance. Though, the equation of state derived 
by Sadus [21] for hard convex chain molecules has such a 
trait, but only the repulsion interaction between the 
segments was considered; the attraction forces were absent. 
 In this work, a variable range attraction interaction and 
repulsion are considered in derivation of an equation of state 
for hard core convex chain molecules. The SAFT-VR 
description is extended to the hard core convex segments of 
chain molecules using the hard convex perturbation theory 
presented by Boublik for convex bodies. The derived 
equation of state predicts (in accordance with the 
experiment) that the compressibility factor of the chain 
molecules increase with the packing fraction and length of 
molecules, but it decreases with segment number and 
temperature. The obtained relation for the compressibility 
factor of chain molecules, Z (1), is a temperature-dependent 
equation. However, despite the temperature dependency of 
both    the   chain    and    dispersion    contributions   to   the  

              
Fig. 6. The  reduced  bulk   modulus  (a), Br,  and  the  reduced thermal  expansion  coefficient, αr,  (b) vs. η  for  chain  
            molecules with a length of 100σ and various prolate sphereocylinder segment numbers, m: 5 (●), 10 (♦), 30 (■)  

                   and 50 (▼), in the reduced temperature 1.4. 
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compressibility factor, the chain compressibility factor 
changes very little with temperature. Comparing the results 
of the present work with that of Sadus revealed the 
important role of the dispersion force in the compressibility 
factor of chain molecules. 
 It was also shown that the derived equation of state (CB-
SAFT-VR) and the Gil-Villegas et al. SAFT-VR equation 
of state are completely coincidental in the α = 1 limit. 
 The reduced bulk modulus and the reduced thermal 
expansion coefficient were calculated by the compressibility 
factor of the chain molecules of hard convex body core 
Yukawa segments. The results show that the reduced bulk 
modulus increases with the packing fraction and chain 
length but decreases with segment number. The reduced 
thermal expansion coefficient decreases with the packing 
fraction and segment number, but its variation with chain 
length is very small. 
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