# **Regular Article**



*Phys. Chem. Res.*, Vol. 4, No. 3, 355-368, September 2016 DOI: 10.22036/pcr.2016.14658

# Conductometric Analysis of some Ionic Liquids, 1-Alkyl-3-methylimidazolium Bromide with Aspirin in Acetonitrile Solutions

H. Shekaari\*, M.T. Zafarani-Moattar and S.N. Mirheydari

Department of Physical Chemistry, University of Tabriz, Tabriz, Iran (Received 23 February 2016, Accepted 18 April 2016)

In recent years, ionic liquids have been used in pharmaceutical processes. Therefore, having a deep insight into the ion association behavior of ionic liquids in the presence of a drug is of particular importance. So, in this work, the molar conductivities of the ionic liquids, 1-alkyl-3-methylimidazolium bromide, [ $C_n$ MIm]Br (n = 4, 6 and 8) in various concentrations of aspirin (ASA) in acetonitrile (MeCN) solutions are determined in very diluted region of ILs, (molality less than 0.01 mol kg<sup>-1</sup>) and at 298.15 K. The obtained conductivity data were analyzed by low concentration Chemical Model (lcCM) of conductance equation. Using this model the limiting molar conductivities ( $\Lambda_0$ ) and ion association constants ( $K_A$ ) were calculated. The results show that the  $\Lambda_0$  and  $K_A$  values of ionic liquid are affected by the alkyl chain length of cation and the concentration of ASA. The values of  $\Lambda_0$  and  $K_A$  decrease as the alkyl chain length of cation and ASA concentration increase. The  $K_A$  was also used to calculate the standard Gibbs energy ( $\Delta G_A^0$ ) of ion-pairing association. In general, 1-butyl-3-methylimidazolium bromide, [BMIM]Br, has the low values of ion-pair formation and the high negative values of  $\Delta G_A^0$  and stronger interaction between [BMIM]Br and ASA.

Keywords: Ionic liquids, ASA, Molar conductivity, Ion associations constant, Low concentration, Chemical model (IcCM)

### INTRODUCTION

Aspirin, as an active ingredient in acetylsalicylic acid (ASA), is a medication often used to relieve pain, fever and inflammation [1]. It is one of the water poor soluble drugs (0.33 g in 100 ml at T = 298.15) which is feasibly hydrolyzed in the presence of moisture; no wonder that there is no another solvent as important as acetonitrile (MeCN) in the pharmaceutical [2,3]. Poor solubility of ASA in water can dramatically reduce its bioavailability [4]. Various approaches have been employed to improve the oral bioavailability such as size reduction, salt formation, co-solventcy and solid dispersion, though some of these methods are not always applicable [5-8].

Recently to overcome these problems, ionic liquids have been suggested as a new class of organic salts in pharmaceutical with a melting point around or below room temperature [9-14]. They have many interesting features like, low vapour pressure, high electrical conductivity, non-flammability and favourable solvating properties for a range of polar and non-polar compounds [15-19]. They are also applied in multidisciplinary sciences such as electrochemistry, separation processes, synthesis and specially in pharmaceutical industrial [20].

Analyzing the interactions between a drug and ionic liquid (IL) would be a prerequisite factor evaluate the drug solubility in it. In this respect, there are some reports concerning the qualitative and quantitative analyses of dominant molecular interactions between ionic liquid and drug probed by electrical conductance [23]. Using the conductometric analysis we can provide the valuable information about the ion association and ion solvation of the electrolytes [24]. For example, addition of ASA strongly affects the value of ion association and molar conductivity of ILs. Interactions between ions and solute cause to increase the distance between cation and anion. Importance

<sup>\*</sup>Corresponding author. E-mail: hemayatt@yahoo.com

of molar conductivity and ion association of ionic liquid has been a motivation for the extensive research efforts on the conductometric analysis of the ionic liquids, mostly in water or other molecular solvents for a wide range of IL concentrations. Results show that the cation and anion types of ionic liquids highly affect the ion association and limiting molar conductivities of ILs [25-34]. Despite the applications of ionic liquids in pharmaceutical, the number of studies on the thermophysical properties of ionic liquid in the presence of drug is very limited.

Recently in our laboratory, thermophysical properties including density, speed of sound and molar conductivity of acetaminophen in the aqueous solutions of ionic liquid, 1hexyl-3-methylimidazolium bromide have been studied. The results show that acetaminophen would be acting as a structure breaker in water and this behavior will be weakened with increasing ionic liquid concentration [35].

In continuation of our systematic thermodynamic investigation of drug in the ionic liquid solutions, in this work, the electrical conductance of some imidazolium based ionic liquid with bromide anion,  $[C_nMIm]Br$  (n = 4, 6 and 8), in several molality (0.05, 0.10, 0.15 and 0.2) mol kg<sup>-1</sup> of aspirin (ASA) in MeCN solutions is investigated in a very diluted region of ILs, (molality less than 0.01 mol kg<sup>-1</sup>) and at 298.15 K. The obtained data are used to calculate the ion association constant ( $K_A$ ), limiting molar conductivity ( $\Lambda_0$ ), Walden product ( $\Lambda_0\eta$ ) and distance parameter (R) using the low concentration Chemical Model (lcCM). Gibbs free energy of ion pair formation ( $\Delta G_A^0$ ) is also estimated using the  $K_A$  values.

## EXPERIMENTAL

#### Chemicals

*N*-methylimidazole, 1-bromobutane, 1-bromohexane, 1bromooctane, ethyl acetate, acetyl salicylic acid (ASA) and acetonitrile (MeCN) were purchesed from Merck. A sample description of the used chemicals is provided in Table 1. All of the purities are given in mass percentage.

## Synthesis of the Ionic Liquids

1-Alkyl-3-methylimidazolium bromide ( $[C_nMIm]Br$ , n = 4, 6, 8) was synthesized according to the procedure

described in literatures [36-37], by direct alkylation of Nmethylimidazole with an excess amount of 1-haloalkane in a round bottom flask mixed by a magnetic stirrer under a nitrogen atmosphere. The mixing of the chemicals was performed at first under ice-cooling, and then after rising the temperature to room temperature. The temperature was gradually increased over a period of time (several hours) to a final reaction temperature of about 50 °C and kept constant until the end of the reaction. The reaction mixture was stirred for one week. Finally, the crude product was separated from reagents and then washed three times with fresh ethylacetate. The removal of residual volatile compounds from the ionic liquid was carried out in high vacuum at 75 °C using a rotary evaporator for at least 4 h at the reduced pressure. The obtained ionic liquid was verified by <sup>1</sup>H NMR spectroscopy. <sup>1</sup>H NMR spectra of [BMIm]Br, [HMIm]Br and [OMIm]Br are provided in the supporting information as Figs. S1, S2 and S3, respectively. The details of NMR chemical shifts along with the assigned protons are as follows: [BMIm]Br: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δppm = 0.91 (3H, t, but-CH<sub>3</sub>), 1.34 (2H, m, CH<sub>2</sub>), 1.86 (2H, m, CH<sub>2</sub>), 4.08 (3H, s, NCH<sub>3</sub>), 4.29 (2H, t, NCH<sub>2</sub>), 7.46 (1H, s, NCH), 7.58 (1H, s, NCH), 10.30 (1H, s, NCHN). [HMIm]Br: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δppm 0.804 (t, 3H; CH<sub>3</sub>), 1.250 (m, 6H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.837 (m, 2H; CH<sub>2</sub>), 4.074 (s, 3H, N-CH<sub>3</sub>), 4.243 (t, 2H, NCH<sub>2</sub>), 7.464 (t, 1H; N-CH=C), 7.633 (t, 1H, NCH= C), 10.288 (s, 1H, N-CH=N).  $[OMIm]Br: {}^{1}H NMR (400 MHz, CDCl_3): \delta ppm = 0.853 (t, 100)$ 3H, CH<sub>3</sub>), 1.251 (m, 10H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.905 (m, 2H, CH<sub>2</sub>), 4.145 (s, 3H, N-CH<sub>3</sub>), 4.311 (m, 2H, N-CH<sub>2</sub>), 7.465 (t, 1H, N-CH=C), 7.642 (t, 1H, N-CH=C), 10.408 (s, 1H, N-CH=N). The ionic liquids were used after vacuum desiccated for at least 48 h to remove trace amount of moisture. Water content found by Karl Fischer method in the ionic liquids was less than 0.3%.

#### **Apparatus and Procedure**

**Density and viscosity measurements.** The sample densities were measured with a vibrating tube densimeter (Anton Paar, DSA 5000 densimeter and speed of sound analyzer), calibrated with dried air and doubly distilled water at atmospheric pressure. Density is extremely sensitive to temperature, so it was kept constant within  $\pm 1.0 \times 10^{-3}$  K using the Peltier technique built in densimeter.

| Chemical name     | CAS No.   | Provenance  | Mass fraction purity |
|-------------------|-----------|-------------|----------------------|
| Aspirin           | 56-40-6   | Merck       | >0.998               |
| N-methylimidazole | 210-484-7 | Merck       | ≥0.99                |
| Bromobutane       | 109-65-9  | Merck       | ≥0.980               |
| Bromohexane       | 111-25-1  | Merck       | ≥0.980               |
| Bromooctae        | 111-83-1  | Merck       | ≥0.980               |
| Ethyl acetate     | 141-78-6  | Merck       | ≥0.998               |
| [BMIm]Br          | -         | Synthesized | 0.980                |
| [HMIm]Br          | -         | Synthesized | 0.980                |
| [OMIm]Br          | -         | Synthesized | 0.980                |

Table1. Sample Description Table of the Chemicals Used

**Table 2.** Densities (d) and Viscosities ( $\eta$ ) ASA in MeCN Solutions at T = 298.15 K

| m                                                                                       | $10^{3} d$           | η       |  |  |  |
|-----------------------------------------------------------------------------------------|----------------------|---------|--|--|--|
| (mol kg <sup>-1</sup> )                                                                 | $(\text{kg m}^{-5})$ | (mPa s) |  |  |  |
| 0.0523                                                                                  | 0.790608             | 0.395   |  |  |  |
| 0.1014                                                                                  | 0.793338             | 0.401   |  |  |  |
| 0.1031                                                                                  | 0.793432             | 0.401   |  |  |  |
| 0.1506                                                                                  | 0.796073             | 0.406   |  |  |  |
| 0.1536                                                                                  | 0.796240             | 0.406   |  |  |  |
| 0.2039                                                                                  | 0.799037             | 0.412   |  |  |  |
| 0.2031                                                                                  | 0.798992             | 0.412   |  |  |  |
| <sup>a</sup> Standard an extrintian form $(D) = 5 \times 10^{-2} \log m^{-3}$ and $(m)$ |                      |         |  |  |  |

<sup>a</sup>Standard uncertainties for u (d) =  $5 \times 10^{-2}$  kg m<sup>-3</sup> and u ( $\eta$ ) = 0.005 mPa s.

The uncertainty of density measurements for ASA in MeCN solutions was better than  $\pm 5 \times 10^{-2}$  kg m<sup>-3</sup>. The analytical balance was analytical balance (AND, GR202, Japan) with the precision of  $\pm 1 \times 10^{-8}$  kg. The viscosities were measured using an Ubbelohde-type viscometer, calibrated with doubly distilled water. Viscosity of the solutions ( $\eta$ ) was obtained by the following equation:

$$\frac{\eta}{d} = Lt - \frac{K}{t} \tag{1}$$

where d is the density, t is the flow time of the solution, L, and K are the viscometer constants. A digital stopwatch with a resolution 0.01 s was used to measure the flow time. The estimated uncertainty of the experimental viscosity was  $\pm 0.005$  mPa s. Viscosities and densities of (ASA + MeCN) mixtures at different concentrations are listed in Table 2.

The measurement of specific conductivity. Specific conductivities were measured using a conductivity meter (Metrohm model 712, Switzerland) with accuracy  $\pm 0.5\%$ . The cell constant was calculated by the repeated measurements of KCl solution in 0.01 mol kg<sup>-1</sup>. About 50 ml of solvent was filled into the conductivity cell and the cell was closed. Weighting was performed by an analytical balance (AND, GR202, Japan) with the precision of  $\pm 1 \times$  $10^{-8}$  kg. After the measurement of the solvent conductivity, a weighted amount of pure ionic liquid was added with a syringe to the cell containing solvent and the measurement was repeated. To minimize the risk of the presence of concentration gradients in the cell, the solution was continuously stirred with a magnetic stirrer. The water from a thermostatically regulated bath was circled around the cell with double wall to maintain the temperature with an uncertainty  $\pm 0.02$  K. Specific conductivity ( $\kappa$ ) is related to the ion mobility and the number of charge carriers, which can be expressed by;  $\kappa = \sum n_i q_i \mu_i$  where  $n_i$  is the number of charge carriers of species i,  $q_i$  is the charge, and  $\mu_i$  is the mobility. An increase in concentration of the ionic liquid in MeCN results in an increase in the number of the charge carriers and charge [38]. For this region in above equation the effect of mobility of the ions is lower than those of other two parameters. Moreover, the specific conductivity of the alkyl side chain increases at the same concentration due to the decrease in the ions mobility. On the other hand the specific conductivity decreases with addition of ASA to the ionic liquid solution. This indicates the low mobility of the ions due to the increase of the interaction between ion-ASA.

#### **Model Detail**

The values of obtained molar conductivity ( $\Lambda$ ) for the ionic liquids in the studied solutions (ASA + MeCN) have been calculated by the relation  $\Lambda = 1000 \kappa/c$ , where  $\kappa$  is the specific conductivity of the ionic liquid solutions. The conductivity data were analyzed with low concentration Chemical Model (lcCM) conductivity equation using the following set of equations [39] which is the Fuoss-Onsager type equation.

$$\Lambda = \alpha \Big[ \Lambda_0 - S(c\alpha)^{1/2} + Ec\alpha \ln(c\alpha) + J_1 c\alpha + J_2 (c\alpha)^{3/2} \Big]$$
(2)

$$K_A = \frac{1 - \alpha}{\alpha^2 c \gamma^2_{\pm}} \tag{3}$$

$$\ln \gamma_{\pm} = -\frac{\lambda_D q}{1 + \lambda_D R} \tag{4}$$

$$\lambda_D^2 = \frac{16000N_A z^2 e^2 \alpha c}{\varepsilon_0 \varepsilon k_B T}$$
<sup>(5)</sup>

$$q = \frac{z^2 e^2}{8\pi\varepsilon_0 \varepsilon k_B T} \tag{6}$$

In above equations,  $\Lambda$  and  $\Lambda_0$  are molar conductivities at molarity c and at infinite dilution,  $(1-\alpha)$  is the fraction of oppositely charged ions acting as ion pairs,  $\gamma_{\pm}$  is the corresponding mean activity coefficient of the free ions,  $\lambda_D$ is the Debye parameter, e is the electronic charge, z is the ionic charge,  $\varepsilon_0$  is the permittivity of vacuum,  $\varepsilon$  is the dielectric constant of the solvent, and the other symbols have their usual meanings. The coefficients E,  $J_1$  and  $J_2$ required for calculations were taken from Ref. [40]. The initial guess of limiting molar conductivity and ion association constant were obtained from Debye-Hückel-Onsager extrapolation of the data [41]. Due to the lack of association constant for the studied solutions,  $K_A$  was first estimated from the Arrhenius-Ostwald relation [41] and then the other parameters were determined using Eq. (2). The parameter R represents the center-to-center distance between the ions in the ion pairs.

## **RESULTS AND DISCUSSION**

The values of the molar conductivity (A) for the ionic liquids, [BMIm]Br, [HMIm]Br and [OMIm]Br in the several concentrations (0.0, 0.10, 0.15, 0.20) of aspirin (ASA) in acetonitrile (MeCN) solutions are listed in Table 3. The results show that the molar conductivity decreases with increasing the concentration of ionic liquids due to the increase in the ion pair formation. These values for [OMIm]Br in several molality of ASA in MeCN solutions are plotted in Fig. 1. This trend can be interpreted in terms of strengthening interactions between the ionic liquid and ASA which may reduce the ion pair

| $10^{3} c_{IL}$        | Λ                                   |
|------------------------|-------------------------------------|------------------------|-------------------------------------|------------------------|-------------------------------------|------------------------|-------------------------------------|------------------------|-------------------------------------|
| (mol m <sup>-3</sup> ) | $(S \text{ cm}^2 \text{ mol}^{-1})$ | (mol m <sup>-3</sup> ) | $(S \text{ cm}^2 \text{ mol}^{-1})$ | (mol m <sup>-3</sup> ) | $(S \text{ cm}^2 \text{ mol}^{-1})$ | (mol m <sup>-3</sup> ) | $(S \text{ cm}^2 \text{ mol}^{-1})$ | (mol m <sup>-3</sup> ) | $(S \text{ cm}^2 \text{ mol}^{-1})$ |
| [BMIm]Br               |                                     |                        |                                     |                        |                                     |                        |                                     |                        |                                     |
| $m_{ASA} =$            |                                     | $m_{ASA} =$            |                                     | $m_{ASA} =$            |                                     | $m_{ASA} =$            |                                     | $m_{ASA} =$            |                                     |
| 0.0000                 |                                     | 0.0523                 |                                     | 0.1031                 |                                     | 0.1506                 |                                     | 0.2039                 |                                     |
| mol kg <sup>-1</sup>   |                                     | mol kg <sup>-1</sup>   |                                     | mol kg <sup>-1</sup>   |                                     | mol kg <sup>-1</sup>   |                                     | mol kg <sup>-1</sup>   |                                     |
|                        |                                     | 8                      |                                     |                        |                                     | 8                      |                                     | 8                      |                                     |
| 0.1586                 | 170.69                              | 0.1598                 | 150.69                              | 0.2107                 | 139.69                              | 0.1840                 | 128.45                              | 0.1244                 | 124.03                              |
| 0.3250                 | 160.33                              | 0.3399                 | 148.50                              | 0.3876                 | 137.55                              | 0.3619                 | 126.52                              | 0.2592                 | 122.46                              |
| 0.4764                 | 154.32                              | 0.5323                 | 146.49                              | 0.5672                 | 135.44                              | 0.5516                 | 124.94                              | 0.5176                 | 120.42                              |
| 0.6391                 | 147.46                              | 0.7106                 | 144.65                              | 0.7129                 | 134.24                              | 0.7602                 | 122.78                              | 0.6858                 | 118.52                              |
| 0.8081                 | 141.94                              | 0.8871                 | 142.58                              | 0.8853                 | 133.17                              | 1.0055                 | 121.46                              | 0.8394                 | 116.55                              |
| 1.0034                 | 137.15                              | 1.0677                 | 141.41                              | 1.0591                 | 132.28                              | 1.2040                 | 120.13                              | 0.9830                 | 115.55                              |
| 1.1797                 | 133.53                              | 1.2307                 | 140.72                              | 1.2515                 | 131.20                              | 1.3692                 | 119.51                              | 1.1381                 | 114.29                              |
| 1.3853                 | 129.08                              | 1.4194                 | 140.05                              | 1.4289                 | 130.31                              | 1.5309                 | 118.91                              | 1.2775                 | 113.88                              |
| 1.5666                 | 125.64                              | 1.5999                 | 139.12                              | 1.6017                 | 129.73                              | 1.7263                 | 117.85                              | 1.4215                 | 112.97                              |
| 1.7117                 | 123.81                              | 1.7706                 | 138.98                              | 1.8036                 | 128.63                              |                        |                                     | 1.5428                 | 112.00                              |
| 1.8482                 | 121.38                              |                        |                                     |                        |                                     |                        |                                     | 1.6849                 | 111.32                              |
|                        |                                     |                        |                                     |                        |                                     |                        |                                     |                        |                                     |
| [HMIm]Br               |                                     |                        |                                     |                        |                                     |                        |                                     |                        |                                     |
| $m_{ASA} \equiv$       |                                     | $m_{ASA} \equiv$       |                                     | $m_{ASA} =$            |                                     | $m_{ASA} =$            |                                     | $m_{ASA} =$            |                                     |
| 0.0000                 |                                     | 0.0522                 |                                     | 0.1014                 |                                     | 0.1550                 |                                     | 0.2031                 |                                     |
| шог кд                 |                                     | mor kg                 |                                     | mor kg                 |                                     | mor kg                 |                                     | mor kg                 |                                     |
| 0.1511                 | 170.56                              | 0.1842                 | 145.28                              | 0.1854                 | 132.03                              | 0.1423                 | 125.78                              | 0.1103                 | 124.70                              |
| 0.2877                 | 167.93                              | 0.3360                 | 143.37                              | 0.3388                 | 130.02                              | 0.2851                 | 124.05                              | 0.2312                 | 122.73                              |
| 0.3987                 | 165.90                              | 0.4702                 | 141.58                              | 0.4321                 | 129.09                              | 0.4105                 | 123.16                              | 0.4604                 | 121.19                              |
| 0.5672                 | 164.26                              | 0.6039                 | 139.91                              | 0.5590                 | 128.33                              | 0.5327                 | 122.22                              | 0.6096                 | 120.29                              |
| 0.7380                 | 162.58                              | 0.7501                 | 138.51                              | 0.6874                 | 127.22                              | 0.6786                 | 120.98                              | 0.7458                 | 119.49                              |
| 0.8923                 | 160.78                              | 0.9039                 | 137.76                              | 0.7838                 | 126.22                              | 0.8146                 | 120.18                              | 0.8732                 | 118.76                              |
| 1.0683                 | 160.04                              | 1.0316                 | 136.88                              | 0.9286                 | 125.06                              | 0.9491                 | 119.28                              | 1.0108                 | 118.13                              |
| 1.2553                 | 158.59                              | 1.1774                 | 135.73                              | 1.0648                 | 124.18                              | 1.0898                 | 118.55                              | 1.1344                 | 117.59                              |
| 1.4103                 | 157.53                              | 1.3108                 | 134.67                              | 1.1987                 | 123.07                              | 1.2109                 | 118.18                              | 1.2621                 | 117.11                              |
| 1.5686                 | 156.17                              | 1.4713                 | 133.42                              | 1.4025                 | 122.24                              |                        |                                     | 1.3697                 | 116.67                              |
| 1.7634                 | 155.14                              | 1.6167                 | 132.62                              | 1.5336                 | 121.76                              |                        |                                     | 1.4957                 | 115.93                              |
| [OMIm]D#               |                                     |                        |                                     |                        |                                     |                        |                                     |                        |                                     |
|                        |                                     | m                      |                                     | m                      |                                     | masa -                 |                                     | masa -                 |                                     |
| $m_{ASA} = 0.0000$     |                                     | 0.0520                 |                                     | 0.1012                 |                                     | 0 1530                 |                                     | 0.2030                 |                                     |
| mol $k \sigma^{-1}$    |                                     | mol $k \sigma^{-1}$    |                                     | $mol k \sigma^{-1}$    |                                     | $mol kg^{-1}$          |                                     | $mol k g^{-1}$         |                                     |
| morkg                  |                                     | mor kg                 |                                     | mor kg                 |                                     | mor kg                 |                                     | mor kg                 |                                     |
| 0.1829                 | 164.62                              | 0.1663                 | 130.64                              | 0.1093                 | 128.76                              | 0.0862                 | 122.80                              | 0.1148                 | 110.09                              |
| 0.3091                 | 163.15                              | 0.3081                 | 128.54                              | 0.1773                 | 127.90                              | 0.1667                 | 121.92                              | 0.2513                 | 109.10                              |
| 0.4417                 | 161.58                              | 0.4708                 | 126.59                              | 0.2983                 | 126.80                              | 0.3177                 | 120.68                              | 0.3889                 | 108.29                              |
| 0.5462                 | 160.12                              | 0.6511                 | 125.37                              | 0.4143                 | 125.75                              | 0.4125                 | 119.82                              | 0.5140                 | 107.80                              |
| 0.6562                 | 159.15                              | 0.8094                 | 124.52                              | 0.5193                 | 124.61                              | 0.5162                 | 118.93                              | 0.6467                 | 107.11                              |
| 0.8125                 | 158.14                              | 0.9624                 | 123.52                              | 0.6478                 | 123.67                              | 0.6198                 | 118.24                              | 0.7780                 | 106.74                              |
| 0.9297                 | 157.73                              | 1.1126                 | 122.85                              | 0.7610                 | 122.96                              | 0.8578                 | 117.05                              | 0.8935                 | 106.26                              |
| 1.0540                 | 157.06                              | 1.3566                 | 121.32                              | 0.8432                 | 122.18                              | 0.9646                 | 116.71                              | 1.0207                 | 105.95                              |
| 1.1694                 | 156.62                              | 1.5250                 | 120.05                              | 0.9379                 | 121.88                              | 1.0883                 | 115.95                              | 1.1566                 | 105.53                              |
| 1.2441                 | 156.13                              | 1.6583                 | 119.45                              | 0.1093                 | 128.76                              | 1.2233                 | 115.09                              | 1.2727                 | 105.40                              |
| 1.4238                 | 155.60                              |                        |                                     |                        |                                     |                        |                                     |                        |                                     |
| 1.6337                 | 155.11                              |                        |                                     |                        |                                     |                        |                                     |                        |                                     |

Table 3. The Molar Conductivities (A) of the Ionic Liquids [BMIm]Br, [HMIm]Br and [OMIm]Br in the Several Molality of ASA in MeCN Solutions as a Function of IL Concentration at 298.15 K

 $c_{\rm IL}$  is molarity of ionic liquid in (ASA +MeCN) solutions and  $m_{\rm ASA}$  is the molarity of the solution of aspirin in MeCN.

Shekaari et al./Phys. Chem. Res., Vol. 4, No. 3, 355-368, September 2016.



Fig. 1. Molar conductivities (Λ) of [OMIm]Br in several molality of ASA in MeCN solutions at 298.15 K; (\*, 0.0000; ▲, 0.0523; ◆, 0.1031; ■, 0.1506; ●, 0.2039 mol kg<sup>-1</sup>).

formation of the ionic liquid. The limiting molar conductivity values  $\Lambda_0$  for ionic liquids in MeCN in this work are respectively 181.19, 173.73 and 168.50 for [BMIM]Br, [HMIM]Br and [OMIM]Br while these values in reference [42] are 185.3, 178.1 and 169.1. The comparison shows a good agreement between the  $\Lambda_0$  values of the ionic liquids in MeCN with those reported in the literatures [42].

The values of  $\Lambda_0$  for ionic liquids with different alkyl chains are in this order: octyl < hexyl < butyl. This sequence agrees with the order of the interaction energies calculated experimentally and theoretically for the ILs [42]. Based on

the relative abundances of fragment ions originating from the MS/MS decompositions of mixed complexes  $([C^1.....Br.....C^2]^+)$  it was possible to infer a qualitative order of intrinsic bond strength to Br<sup>-</sup>:[emim]<sup>+</sup> > [bmim]<sup>+</sup> > [hmim]<sup>+</sup> > [omim]<sup>+</sup> [43]. The values of the limiting molar conductivity of cations for the ionic liquids, [BMIm]Br, [HMIm]Br and [OMIm]Br are 84.6, 77.4 and 68.4 S cm<sup>2</sup> mol<sup>-1</sup>, respectively and for anion Br<sup>-</sup> is 100.7 S cm<sup>2</sup> mol<sup>-1</sup> [42]. These values show that the contribution of anion in molar conductivity is more than cations. In pure acetonitrile, the [OMIm]Br is more solvated than two other ionic liquids, so has the low values of molar conductivity. The values of

| <b>Table 4.</b> The Limiting Molar Conductivities ( $\Lambda_0$ ), Walden Products ( $\Lambda_0\eta$ ), Ion Association Constant | $K_A$ ), Sta | indard |
|----------------------------------------------------------------------------------------------------------------------------------|--------------|--------|
| Gibbs Energies of Ion-pairing Formation ( $\Delta G_A^0$ ) and Distance Parameters (R) of the Ionic                              | Liquids      | in the |
| Several Concentration of ASA in MeCN Solutions at 298.15 K                                                                       |              |        |

| m <sub>ASA</sub>        | K <sub>A</sub>    | $\Lambda_0$                         | $10^9 R$ | $\Lambda_0 \eta$                          | $\Delta G_{\star}^{0}$ |
|-------------------------|-------------------|-------------------------------------|----------|-------------------------------------------|------------------------|
| (mol kg <sup>-1</sup> ) | $(dm^3 mol^{-1})$ | $(S \text{ cm}^2 \text{ mol}^{-1})$ | (m)      | $(S \text{ cm}^2 \text{ mPa s mol}^{-1})$ | $(KJ mol^{-1})$        |
|                         |                   |                                     |          |                                           |                        |
| [BMIm]Br                |                   |                                     |          |                                           |                        |
| 0.0000                  | 158.20            | 181.19                              | 2.65     | 78.79                                     | -12.52                 |
|                         | 152 [42]          | 185.3 [42]                          |          |                                           |                        |
|                         |                   |                                     |          |                                           |                        |
| 0.0523                  | 141.85            | 154.57                              | 3.64     | 54.10                                     | -12.28                 |
| 0.1031                  | 131.16            | 143.41                              | 3.28     | 51.05                                     | -12.09                 |
| 0.1506                  | 125.14            | 131.16                              | 2.85     | 47.49                                     | -11.97                 |
| 0.2039                  | 106.87            | 126.29                              | 1.22     | 46.22                                     | -11.57                 |
|                         |                   |                                     |          |                                           |                        |
| [HMIm]Br                |                   |                                     |          |                                           |                        |
| 0.0000                  | 128.25            | 173.73                              | 2.93     | 75.57                                     | -12.03                 |
|                         | 130 [42]          | 178.1 [42]                          |          |                                           |                        |
|                         |                   |                                     |          |                                           |                        |
| 0.0522                  | 118.63            | 148.60                              | 2.27     | 55.07                                     | -11.84                 |
| 0.1014                  | 114.80            | 134.98                              | 2.32     | 52.01                                     | -11.76                 |
| 0.1536                  | 109.83            | 127.92                              | 2.70     | 47.79                                     | -11.65                 |
| 0.2039                  | 98.59             | 125.40                              | 1.87     | 46.66                                     | -11.39                 |
|                         |                   |                                     |          |                                           |                        |
| [OMIm]Br                |                   |                                     |          |                                           |                        |
| 0.0000                  | 122.99            | 168.50                              | 3.83     | 73.30                                     | -11.93                 |
|                         | 120 [42]          | 169.1 [42]                          |          |                                           |                        |
|                         |                   |                                     |          |                                           |                        |
| 0.0520                  | 110.25            | 132.90                              | 2.33     | 46.51                                     | -11.66                 |
| 0.1011                  | 100.74            | 130.52                              | 2.11     | 45.16                                     | -11.42                 |
| 0.1537                  | 95.05             | 124.09                              | 2.40     | 44.18                                     | -11.29                 |
| 0.2000                  | 80.55             | 111.35                              | 2.81     | 40.75                                     | -10.88                 |

 $\Lambda_0$  and  $\Lambda$  for ionic liquids in several concentrations and 0.1 molality of ASA in MeCN solutions are presented in Table 4 and Fig. 2. It is clear that the values of  $\Lambda$  and  $\Lambda_0$  for ionic liquids decrease with addition of ASA to the solutions. These lower values are due to the low mobility of the solvated ions with large radii and increase in the viscosity of medium with addition of ASA. The variation of the limiting

molar conductivities  $(\Lambda_0)$  with alkyl chain length of  $[C_nMIm]Br$  (n = 4, 6 and 8) in several concentration of ASA in MeCN solutions are presented in Fig. 3. The volumetric properties of ASA in the presence of  $[C_nMIm]Br$  (n = 4, 6 and 8) in MeCN solutions have been studied in our previous papers which confirm the conductometric trend [44,45]. The results show that dominant interaction between ionic liquids

Shekaari et al./Phys. Chem. Res., Vol. 4, No. 3, 355-368, September 2016.



Fig. 2. Comparison of molar conductivities (Λ) of ionic liquids in 0.1 mol kg<sup>-1</sup> molality of ASA in MeCN solutions at 298.15 K; (▲, [OMIm]Br; ■, [HMIm]Br; and ◆, [BMIm]Br).

and ASA are ion-polar and polar-polar and stronger interactions are related to [BMIM]Br [44,45]. In this ionic liquid, ions are less solvated by the solvent molecules and have greater ionic mobility so has the large value of limiting molar conductivity. To eliminate the effect of viscosity on the ionic mobility, Walden product which is a useful tool to discuss ion-solvent interactions was calculated. The conductivity of the ions at infinite dilution depends only on their mobility and is inversely proportional to the viscosity of the solvent. It is expected that the product of ion conductivity by the viscosity of the medium is independent of the composition of solvent. Hence, the Walden products ( $\Lambda_0\eta$ ) are expected to be constant for a given electrolyte in a series of solvent mixtures in which the ion-solvent interactions are uniform [46-48]. The calculated values of Walden product ( $\Lambda_0\eta$ ) are presented in Table 4. These values are plotted against the several molality of ASA in MeCN solutions in Fig. 4. It is clear that the absolute values of Walden product for ionic liquids decrease slowly with increasing the concentration of ASA. This suggests that the ions do not have the same effective radius in different solvent compositions and consequently provides evidence for desolvation of the ions in the solutions. This behaviour seems to be caused by the preferential solvation of the ions of the ionic liquid by the molecules of ASA.

The values of ion association constant ( $K_A$ ) of the ionic liquids in the several concentrations of ASA in MeCN solutions are given in Table 4. As shown in Table 4, the values of ( $K_A$ ) for the ionic liquid decrease with the increase of ASA concentration. This can be ascribed to the facts that



Fig. 3. Variation of limiting molar conductivities (A<sub>0</sub>) with carbon atom number, n of [C<sub>n</sub>mim] Br (n = 4, 6 and 8) in several molalities of ASA in MeCN solutions at 298.15 K; (♦, 0.0; ■, 0.05; ▲, 0.1; ●, 0.15; \*, 0.2).

the increased size of ions caused by the possible interactions between ionic liquid and ASA reduces the ion pair formation. At a fixed molality of ASA, the values of ion association constant increase with the alkyl chain length of the cations in this sequence octyl < hexyl < butyl. The high surface electrical charge density of the [BMIM]<sup>+</sup> indicates its high ionic association. Clearly, the  $K_A$  values of each ionic liquid decrease at higher concentrations of ASA. This is due to the strong ion-ASA interactions in the concentrated solutions which reduce the ion-pair formation.

The calculated values of distance parameters (R) are given in Table 4. The *R* values decrease as the

concentrations of (ASA + MeCN) solutions increase. Because of the stronger interactions between ASA and ionic liquid, addition of ASA to the ionic liquid solutions leads to the decrease of the acetonitrile molecules releasing to the bulk and solvation of the ions, so the distance between ions is reduced. The low values of (R) for [BMIm]Br is related to the strong ionic association.

The association constants were used to calculate the standard Gibbs energy ( $\Delta G_A^0$ ) of ion-association process using the following equation:

$$\Delta G_{A}^{0} = -RT \ln K_{A} \tag{8}$$

Shekaari et al./Phys. Chem. Res., Vol. 4, No. 3, 355-368, September 2016.



**Fig. 4.** Walden product  $(\Lambda_0 \eta)$  of the ionic liquids against the several molaity of ASA in MeCN solutions at 298.15 K; ( $\blacktriangle$ , [OMIm]Br;  $\blacksquare$ , [HMIm]Br, and  $\blacklozenge$ , [BMIm]Br).

The obtained values of the standard Gibbs energy are given in Table 4. These values are plotted against the several molality of ASA in MeCN solutions in Fig. 5. As seen in this figure, the negative values of  $\Delta G_A^0$  become more negative at the low molality of ASA in MeCN solutions. The observed results can be explained by the ionassociation phenomena. This means that ion-pair formation decreases with addition of ASA due to the increase in the preferential solvation of ions by the molecules of ASA. In general, it is concluded that addition of ionic liquid to the solutions of ASA leads to the strengthening of the solute-cosolute interactions between ASA and ionic liquid. The values of  $\Delta G_A^0$  become more negative as the cation size of the ionic liquid decreases. Therefor, more spontaneity and feasibility of the association process is observed in the ionic liquid [BMIm]Br.

## ACKNOWLEDGMENTS

All the laboratory work of the present paper has been



**Fig. 5.** The standard Gibbs energy  $(\Delta G_A^0)$  of the ionic liquids against the molality of ASA in MeCN solutions at 298.15 K; ( $\blacklozenge$ , [OMIm]Br;  $\blacksquare$ , [HMIm]Br and  $\blacktriangle$ , [BMIm]Br).

performed in the University of tabriz. The authors would like to thank financial support from the Graduate Council of this university.

## REFERENCES

- Iqbal, M. J., Thermodynamic study of phenyl salicylate solutions in aprotic solvents at different temperatures. J. Chem. Eng. Data, 2010, 55, 5921-5926, DOI: 10.1021/je8003595.
- [2] Bakar, S. K.; Niazi, S., High-performance liquid chromatographic determination of aspirin and its metabolites in plasma and urine. *J. Pharm. Sci.*, **1983**, 72, 1020-1023, PMID:6631685.

- [3] The Pharmacopei of the U.S.A. **1975**; p. 38. 19th revision.
- [4] Mcconvey, I. F.; Woods, D.; Lewis, M.; Gan, Q.; Nancarrow, P., The importance of acetonitrile in the pharmaceutical industry and opportunities for its recovery from waste. *Org. Process. Res. Dev.*, **2012**, *16*, 612-624, DOI: 10.1021/op200350.
- [5] Moniruzzama, M.; Goto, M.; Moniruzzaman M., Ionic liquids: future solvents and reagents for pharmaceuticals. J. Chem. Eng. Japan., 2011, 44, 370-381, DOI: 10.1252/jcej.11we015
- [6] Bittner, B.; Mountfield, R. J., Formulations and related activities for the oral administration of poorly water-soluble compounds in early discovery animal

studies: An overview of frequently applied approaches. Part 2. *Pharm. Ind.*, **2002**, *64*, 800-807.

- [7] Bittner, B.; Mountfield, R., Intravenous administration of poorly soluble new drug entities in early drug discovery: the potential impact of formulation on pharmacokinetic parameters. J. Curr. Opin. Drug Dis. Cov. Devel., 2002, 5, 59-71, PMID:11865674.
- [8] Rogers, R. D.; Seddon, K. R., Ionic liquids-solvents of the future? *Science*, **2003**, *302*, 792-793, DOI: 10.1126/science.1090313.
- [9] Freemantle, M., Ionic liquids may boost clean technology development. *Chem. Eng. News*, 1998, 76, 32-37, DOI: 10.1021/cen-v076n013.p032.
- [10] Aparicio, S.; Alcalde, R.; Garcia, B.; Leal, J. M., High-pressure study of the methylsulfate and tosylate imidazolium ionic liquids. *J. Phys. Chem. B*, 2009, *113*, 5593-5606, DOI: 10.1021/jp9003467.
- [11] Appleby, D.; Hussey, C. L.; Seddon, K. R.; Turp, J. E., Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes. *Nature*, **1986**, *323*, 614–616, DOI: 10.1038/323614a0.
- [12] Blanchard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F., Green processing using ionic liquids and CO<sub>2</sub> Nature. **1999**, *399*, 28-29, DOI: 10.1038/ 19887.
- [13] Mattes, B. R.; Lu, W.; Fadeev, A. G.; Qi, B. H.; Smela, E.; Ding, J.; Spinks G. M.; Mazurkiewicz, J.; Zhou, D. Z.; Wallace, G. G.; MacFarlane, D. R.; Forsyth, S. A.; Forsyth, M., Use of ionic liquids for pi-conjugated polymer electrochemical devices. *Science*, **2002**, *297*, 983-987, DOI: 10.1126/ science.1072651.
- [14] Reichert, H.; Mezger, M.; Schroder, H.; Schramm, S.; Okasinski, J. S.; Schoder, S.; Honkimaki, V.; Deutsch, M.; Ocko, B. M.; Ralston, J.; Rohwerder, M.; Stratmann, M.; Dosch, H., Molecular layering of fluorinated ionic liquids at a charged sapphire (0001) surface. *Science*, 2008, *322*, 424-428, DOI: 10.1126/ science.
- [15] Watanabe, M.; Tokuda, H.; Tsuzuki, S.; Susan, M. A.B. H.; Hayamizu, K., How ionic are room-temperature ionic liquids? An indicator of the

physicochemical properties. J. Phys. Chem. B, 2006, 110, 19593-19600, DOI: 10.1021/jp064159v.

- [16] Chaban, V. V.; Voroshylova, I. V.; Kalugin, O. N., A new force field model for the simulation of transport properties of imidazolium-based ionic liquids. *Phys. Chem. Chem. Phys.*, **2011**, 466, 7910-7920, DOI: 10.1039/c0cp02778b.
- [17] Duan, E. H.; Guo, B.; Zhang, M. M.; Ren, A. L.; Yang, B. B.; Zhao, D. S., Electrical conductivity of caprolactam tetrabutylammonium bromide ionic liquids in aqueous and alcohol binary systems. *J. Chem. Eng. Data*, **2010**, *55*, 4340-4342, DOI: 10.1021/je100361s.
- [18] Ohno, H.; Ogihara, W.; Sun, J. Z.; Forsyth, M.; MacFarlane, D. R.; Yoshizawa, M., Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes. *Electrochim. Acta*, **2004**, *49*, 1797-1801, DOI: 10.1016/j.electacta.2003.12.011.
- [19] Noda, A.; Hayamizu, K.; Masayoshi, W., J. Phys. Chem. B, 2001, 105, 4603-4610, DOI: 10.1021/ jp004132q.
- [20] Kim, H. J.; Shim, Y., Solvation of carbon nanotubes in a room-temperature ionic liquid. ACS Nano, 2009, 3, 1693-1702, DOI: 10.1021/nn900195b.
- [21] Gardas, R. L.; Dagade, D. H.; Coutinho, J. A. P.; Patil, K. J., Thermodynamic studies of ionic interactions in aqueous solutions of imidazoliumbased ionic liquids [Emim][Br] and [Bmim][Cl], J. Phys. Chem., 2008, 112, 3380-3389, DOI: 10.1021/ jp710351q.
- [22] Wang, H.; Zhou, X.; Gurau, G.; Rogers, R. D., John Wiley & Sons, Ltd., Published (2012) by John Wiley & Sons, Ltd.
- [23] Roy, M. Ch.; Roy, M. N., Conductometric investigation of ion-solvent interactions of an ionic liquid {[emim]CH<sub>3</sub>SO<sub>3</sub>} in pure n-alkanols. *J. Mol. Liq.*, **2014**, *195*, 87-91, DOI: 10.1016/j.molliq.2014.02.008.
- [24] Foreiter, M. B.; Gunaratne, H. Q. N.; Nockemann, P.; Seddon, K. R.; Srinivasan, G., Novel chiral ionic liquids: physicochemical properties and investigation of the internal rotameric behaviour in the neat system. *Phys. Chem. Chem. Phys.*, **2014**, *16*, 1208-1226,

DOI: 10.1039/C3CP53472C.

- [25] Liu, W.; Cheng, L.; Zhang, Y.; Wang, H.; Yu, M., The physical properties of aqueous solution of roomtemperature ionic liquids based on imidazolium: Database and evaluation. *J. Mol. Liq.*, **2008**, *140*, 68-72, DOI: 10.1016/j.molliq.2008.01.008.
- [26] Liu, W.; Zhao, T.; Zhang, Y.; Wang, H.; Yu, M., The physical properties of aqueous solutions of the ionic liquid [BMIM][BF4]. J. Solut. Chem., 2006, 35, 1337-1346, DOI: 10.1007/s10953-006-9064-7.
- [27] Vila, J.; Varela, L. M.; Cabeza, O., Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids. *Electrochim. Acta*, **2007**, *52*, 7413-2417, DOI: 10.1016/j.electacta.2007.06.044.
- [28] Yu, Y. -H.; Soriano, A. N. Li; M. -H., Heat capacities and electrical conductivities of 1-ethyl-3-methylimidazolium-based ionic liquids. *J. Chem. Thermodyn.*, **2009**, *41*, 103-108, DOI: 10.1016/ j.jct.2008.07.013.
- [29] Shekaari, H.; Mousavi, S. S., Conductometric studies of aqueous ionic liquids, 1-alkyl-3-methylimidazolium halide, solutions at T = 298.15-328.15 K. *Fluid Phase Equilib.*, **2009**, 286, 120-126, DOI: 10.1016/j.fluid.2009.08.011.
- [30] Duan, E.; Guan, Y.; Guo, B.; Zhang, M.; Yang, D.; Yang, K., Effects of water and ethanol on the electrical conductivity of caprolactam tetrabutyl ammonium halide ionic liquids. *J. Mol. Liq.*, **2013**, *178*, 1-4, DOI: 10.1016/j.molliq.2012.10.026.
- [31] Liu, Q. -S.; Li, P. -P.; Welz-Biermann, U.; Chen, J.; Liu, X. -X., Density, dynamic viscosity, and electrical conductivity of pyridinium-based hydrophobic ionic liquids. J. Chem. Thermodyn. 2013, 66, 88-94, DOI: 10.1016/j.jct.2013.06.008.
- [32] Vila, J.; Fernández-Castro, B.; Rilo, E.; Carrete, J.; Domínguez-Pérez, M.; Rodríguez, J. R.; García, M.; Varela, L. M.; Cabeza, O., Liquid-solid-liquid phase transition hysteresis loops in the ionic conductivity of ten imidazolium-based ionic liquids. *Fluid Phase Equilib.*, **2012**, *320*, 1-10, DOI: 10.1016/ j.fluid.2012.02.006.
- [33] Leys, J.; Tripathi, C. S. P.; Glorieux, C.; Zahn, S.; Kirchner, B.; Longuemart, S.; Lethesh, K. C.;

Nockemann, P.; Dehaen, W.; Binnemans, K., Electrical conductivity and glass formation in nitrilefunctionalized pyrrolidinium bis(trifluoromethylsulfonyl) imide ionic liquids: chain length and oddeven effects of the alkyl spacer between the pyrrolidinium ring and the nitrile group. *Phys. Chem. Chem. Phys.*, **2014**, *16*, 10548-10557, DOI: 10.1039/C4CP00259H.

- [34] Foreiter, M. B.; Gunaratne, H. Q. N.; Nockemann, P.; Seddon, K. R.; Srinivasan, G., Novel chiral ionic liquids: physicochemical properties and investigation of the internal rotameric behaviour in the neat system. *Phys. Chem. Chem. Phys.*, **2014**, *16*, 1208-1226, DOI: 10.1039/C3CP53472C.
- [35] Shekaari, H.; Zafarani Moattar, M. T.; Ghaffari, F., Solvation properties of acetaminophen in aqueous ionic liquid, 1-hexyl-3-methylimidazolium bromide, solutions at different temperatures. *J. Mol. Liq.*, **2015**, 202, 86-94, DOI: 10.1016/j.molliq.2014.12.015.
- [36] Holbrey, J. D.; Seddon, K. R., The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. *J. Chem. Soc. Dalton Trans.*, **1999**, *13*, 2133-2140, DOI: 10.1039/ A902818H.
- [37] Nockemann, P.; Binnemans, J.; Driesen, K., Purification of imidazolium ionic liquids for spectroscopic applications. *Chem. Phys. Lett.*, 2005, *415*, 131-136, DOI: 10.1016/j.cplett.2005.08.128.
- [38] Xu, H. T.; Zhao, D. C.; Xu, P.; Liu, F. Q.; Gao, G., Conductivity and Viscosity of 1-Allyl-3-methylimidazolium Chloride + Water and Ethanol from 298.15-333.15 K. J. Chem. Eng. Data, 2005, 50, 133-135, DOI: 10.1021/je049787p.
- [39] Vanyur, R.; Biczok, L.; Miskolczy, Z., Micelle formation of 1-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution, Colloids and Surfaces Colloids Surface A: *Physicochem. Eng. Asp.* 2007, 299, 256-261, DOI: 10.1016/j.colsurfa.2006.11.049.
- [40] Barthel, J. M. G.; Krienke, H.; Kunz, W., Phys. Chem. Electrolyte Solut. Modern Aspect, 1998, 73, Springer, DOI: 10.1002/bbpc.199800025.
- [41] Pitzer, K. S., Electrolyte theory-improvements since Debye and Hueckel, *Accounts Chem. Res.*, **1977**, *10*,

371-377, DOI: 10.1021/ar50118a004.

- [42] Wang, H.; Wang, J.; Zhang, Sh.; Pei, Y.; Zhuo, K., Ionic association of the ionic liquids  $[C_4mim][BF_4]$ ,  $[C_4mim][PF_6]$ , and [Cnmim]Br in molecular solvents. *Chem. Phys. Chem.*, **2009**, *10*, 2516-2523, DOI: 10.1002/cphc.200900438.
- [43] Bini, R.; Bortolini, O.; Chiappe, C.; Pieraccini, D.; Siciliano, T., Development of cation/anion "interaction" scales for ionic liquids through ESI-MS measurements, *J. Phys. Chem.* B, **2007**, *111*, 598-604, DOI: 10.1021/jp0663199.
- [44] Shekaari, H.; Zafarani-Moattar, M. T.; Mirheydari, S. N., Thermodynamic study of aspirin in the presence of ionic liquid, 1-hexyl-3-methylimidazolium bromide in acetonitrile at *T* = 288.15-318.15 K. *J. Mol. Liq.*, **2015**, 209, 138-148, DOI: 10.1016/j.molliq.2015.05.032.
- [45] Shekaari, H.; Zafarani-Moattar, M. T.; Mirheydari, S. N., Density, viscosity, speed of sound, and refractive

index of a ternary solution of aspirin, 1-butyl-3-methylimidazolium bromide, and acetonitrile at different temperatures T = 288.15-318.15 K. J. *Chem. Eng. Data*, **2015**, *60*, 1572-1583, DOI: 10.1021/je5008372.

- [46] Wypych-Stasiewicz, A.; Benko, J.; Vollărovă, O.; Bald, A., Conductance studies of Et<sub>4</sub>NIO<sub>4</sub>, Et<sub>4</sub>NClO<sub>4</sub>, Bu<sub>4</sub>NI, Et<sub>4</sub>NI and the limiting ionic conductance in water + acetonitrile mixtures at 298.15 K. *J. Mol. Liq.*, **2014**, *190*, 54-58, DOI: 10.1016/ j.molliq.2013.10.023.
- [47] Farid, I., El-Dossoki, Dissociation constant of quinic acid and association constants of some quinates in aqueous and in alcoholic-aqueous mixed solvents, *J. Chem. Eng. Data*, **2010**, *55*, 2155-2163, DOI: 10.1021/je900750c.
- [48] Robinson, R. A., Stokes, R. H., Electrolyte Solutions, 2nd Revised edn. Dover Publications, Inc., New York, 2002.