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      The density and polarization profiles of the dipolar hard ellipsoids confined between hard walls are studied using the density functional 
theory (DFT). The Hyper-Netted Chain (HNC) approximation is used to write excess grand potential of the system with respect to the bulk 
value. The number density is expanded up to zero and first order in polarization to find the results. For the zero order in polarization, the 
coupled integral equations for the directional densities are obtained. Then, for the first order in polarization the coupled integral equations 
for the directional densities and polarization profiles are obtained. To simplify the calculations we use restricted orientation model (ROM) 
for the orientation of ellipsoids to find the density and polarization profiles. We also apply an electric field and write an expression for the 
excess grand potential of the system and obtain the coupled integral equations for the density and polarization profiles again. Finally, we 
calculate the density and polarization profiles for different cases and compare the obtained results. 
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INTRODUCTION 
 

Due to the equilibrium properties of homogeneous and 
inhomogeneous dipolar fluids especially with dipole-dipole 
interactions, these fluids have recently attracted much 
attention [1-9]. A dipolar hard sphere model is a system of 
hard sphere with embedded point dipoles at the center and it 
has been found to be a simple but still useful model to study 
the equilibrium properties of this kind of fluids either 
theoretically or by computer simulation techniques. These 
fluids with polar molecules mainly represent two important 
physical features, viz. the short-ranged repulsions and the 
long-ranged orientation dependent electrostatic interactions. 
Recent studies have shown that these interactions often 
show unexpected behavior [10]. The simplest example of an 
inhomogeneous dipolar fluid is the interface between a 
dipolar hard sphere fluid and a neutral hard wall [11].  

Density functional theory (DFT) has been proven to be a  
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powerful tool in the study of thermodynamic and structural 
properties of bulk and non-uniform phase of molecular fluid 
and  liquid crystals particularly in two and three dimensions 
[6,7,12]. DFTs have also been used to study the 
thermodynamics of homogeneous molecular fluids and 
structural properties of inhomogeneous molecular fluids, 
such as hard ellipses [12], hard circular cylinders, and hard 
Gaussian overlap fluid [2,13] confined between planar 
walls. Moradi and Rickayzen [14] used a density functional 
formalism, based on the hyper-netted chain (HNC) 
approximation, to obtain number density and polarization of 
dipolar hard spheres between hard walls in the presence of a 
weak electric field.  

Osipov et al. [15] found that the behavior of dipole-
dipole interaction could be treated by separating the direct 
correlation function (DCF) for the fluid into short and long 
range parts. They investigated the formal problems of 
constructing a density functional theory of dipolar fluids and 
proposed an explanation for the failure of all existing 
density-functional   theories   to   describe  the   behavior  of 
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strongly dipolar fluids as observed in computer simulations. 
Cheung and Schmid [16] studied a system of soft 

ellipsoidal molecules confined between two planner walls 
using classical density functional theory. Both the isotropic 
and nematic phases were considered. They evaluated the 
excess free energy using two different Ansa ẗze and the 
intermolecular interaction which was incorporated using 
two different DCFs for the fluids and the calculated density, 
and finally they compared the order parameters to the 
simulation results for the same system. Varga et al. [17] 
used a density functional approach to describe the 
orientational ordering of nonpolar and dipolar Gay-Berne 
fluids. Moradi et al. [18] obtained the interaction forces 
between nano-circular particles suspended in a hard-ellipse 
fluid. Moradi and Avazpour [2] have studied the density 
profiles of a hard Gaussian overlap (HGO) fluid confined in 
between hard walls using the density functional theory. 
Here, we extend this system to a hard ellipsoidal fluid with 
dipole-dipole interaction. This kind of systems has not been 
studied very much; so because of its importance, we use the 
same density functional theory, HNC approximation, to find 
the density and polarization profiles of a dipolar hard 
ellipsoidal fluid confined between two parallel hard walls. 
Then, we examine the effect of external electric field on the 
density and polarization profiles. 

This article is organized as follows: In Sec. 2 we 
describe excess grand potential using the density functional 
theory of molecular fluids confined between planar walls, 
and obtain the direct correlation function (DCF) for dipolar 
hard ellipsoidal molecules. In Sec. 3 we calculate the 
density and polarization profiles of these molecules. In Sec. 
4 we obtain and discuss the results.  Finally, in Sec 5 we 
present the conclusion. 

     
THEORY 
 
Grand Potential and Density Number  

For a model fluid containing hard ellipsoidal molecules  
carrying  electric dipole moment at the center and in the 
presence of an external potential (r, ),V   the excess grand 

potential with respect to its bulk is a unique functional of 
number density. Up to second order in density and using 
HNC  approximation  the  excess grand potential is given as 
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where  12 1 2, ,C r  

 is the DCF for homogeneous molecular 

fluid, 
b  is the bulk density, 1

Bk T  , ,i i i   denotes 

the orientation of ith molecule and  ,r  is the number 

density at point r  with generally molecular 
orientation ,    and T is the total solid angle available 

to the molecules. We approximate the number density as 
  
      

0( , ) ( , ) ( , ),r r r      
  

                                          (2)  

                                                                            
  where 

0 ( , )r  is the number density in the absence of 

dipole-dipole interaction. Due to the symmetry of spherical 
molecules, the electric dipole moment located in the center 
of these molecules can lie freely in any directions and there 
are no preferred directions for them. However, we assume 
the dipole moments in ellipsoids are aligned in direction of 
major axis and because of the dominance of short range 
interaction, they cannot rotate freely. For the first order 
approximation, we assume there is a linear relationship 
between density and local polarization profiles. At first, we 
continue calculation without considering the second term in 
above Eq. (2).  
    In a dipolar hard ellipsoidal fluid, the pair interaction 
potential is given by the dipole-dipole interaction 

 12 1 2, ,ddu r    plus the hard ellipsoidal pair potential 

 12 1 2 ., ,HEu r  
  

 
 
           12 1 2 12 1 2 12 1 2, , , , , ,dd HEu r u r u r      

               (3) 

 
Where  12 1 2, ,ddu r  

 and  12 1 2, ,HEu r    is given by [1]: 
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where 12

12
ˆ rn r


  is a unit vector in the direction of the 

vector joining the center of two particles,  1 2, ,n̂    is the 

closest approach distance of ellipsoids, m is the magnitude 
of dipole moment and ˆ

im is a unit vector along the dipole 

moment of ellipsoids and is given by: 
 

      
ˆ ˆ ˆˆ sin cos sin sin cosi i i i i im i j k                            (6)  

                                                                
and         
 
      2 2 2

12 2 1 2 1 2 1(x x ) ( ) ( )r y y z z                          
 (7) 

 
According to mean spherical approximation (MSA), we can 
define DCF for dipole-dipole interaction as [19,20]: 
 

         12 1 2 12 1 2, , , ,dd ddC r u r     
 

                           (8)                                                                                       
 
Therefore, we have   
 

          122 1 2 122 1 2 12 1 2, , , , , ,HE ddC r C r u r       
  

     (9)  
                                                       
Since each molecule can be aligned in all directions, to 
simplify the problem we apply the  

 
restricted orientation 

model (ROM) and choose N available directions for each 
molecule; in this case the total solid angle ωcan be written 
as [2]: 
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T Nd 
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For the density component within a particular direction and 
corresponding sector, ( )r

  we can write:  
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In the homogeneous case for any position r

  we have: 
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By inserting  Eq. (9) into Eq. (1), the dipolar contribution to 

the excess grand potential can be obtained as: 
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Now we consider a system of dipolar hard ellipsoids 
confined between two parallel hard walls and choose the z-
axis normal to the walls. The excess grand potential per unit 
area with respect to its bulk value in the presence of dipole-
dipole interaction can be written as: 
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where 
                        

       
   1 2 2 2 12 1 2, , ,C z z dx dy C r        



                        
 
  
 And indices α, β show directions of dipolar hard ellipsoids. 
If we minimize Eq. (14) with respect to the density ρα (z1), 
the coupled integral equations of directional density profiles 
can be obtained as: 
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In the second step, we use the density profile, Eq. (2), 
considering the second term,  ,r 

 . Because each 

molecule has a dipole moment which may be aligned in any 
direction, therefore there is a local polarization ( )P r

   which 

can be defined as: 
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The expression ( , )r 
  can be expanded in terms of the 

Legendre polynomials, Pl(θ), as [2]:  
 

      0
( , ) ( ) ( )l l

l
r a r P  





 

                                                (17) 
 
Since the confined dipolar hard ellipsoidal fluid is 
cylindrically symmetric about the z-axis and the DCF which 
has been used here is assumed to be a function of the first-
order Legendre polynomial, only the term containing a1 

contributes in Eq. (17). So, we can write [14]: 
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where 

0 ( , )r 
 is the number density in the absence of 

dipole-dipole interaction and the second term is the 
contribution of the first order in polarization.                                                                 
Here, if we define 0 ( , ) ( , )r r   

   and substitute Eq. (18) 

in Eq. (1) after some mathematical manipulation, the excess 
grand potential is given by: 
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In the following, by

 
using some approximations similar to 

those suggested in reference [14], the entropy term, the first 
term in above expression, can be written as: 
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Again, we consider a system of dipolar hard ellipsoids 
confined between two parallel hard walls and using above 
equation, the excess grand potential per unit area is written 
as: 
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where Aα and Bα, β are given by: 
 
      sin cos sin sin cosA                                  (21) 
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If we minimize the excess grand potential per unit area with 
respect to directional density  1z  and polarization, the 

equilibrium density and polarization satisfy the coupled 
integral equations below: 
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Direct Correlation Function of Hard Ellipsoids 
      The DCF for hard ellipsoids, required for the above 
equations, has been calculated by Allen et al. [21]. They 
used Monte Carlo simulation to find the DCF of hard 
ellipsoids and compared the results with Marko’s [22], 
which were in a reasonable agreement. Here, we use the 
improved Pynn-Wulf [23,24] expression for the DCF of 
hard ellipsoids proposed by Marko: 
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procedure as proposed by Marko, CPY is Percus- Yevick’s 
DCF for hard spheres [25],  1 2ˆ, ,n    is the closest 

approach of hard ellipsoids. The modified closest approach 
introduced by Rickayzen [26] is given by: 
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Parameters 2a and 2b denote the lengths of major and minor 
axis of  the  ellipsoids. In  the following, we  assume  2b is a 

 
 
unit length. The mentioned DCF depends on the orientation 
of the molecules and in our calculation this function is used 
to solve the coupled integral equations and find the density 
and polarization profiles.

 CALCULATION OF THE DENSITY AND 

POLARIZATION PROFILES 
 
      Now, we use Eq. (15) to find the density profile and 
Eqs. (23) and (24) to find density and polarization profiles. 
In these cases, the density and polarization profiles are only 
functions of z variable; the number density and polarization 
have nonzero value in between the walls and zero 
everywhere. Also, here it is assumed that the dipole 
moments are aligned in direction of major axis of ellipsoids. 
We consider the restricted orientation model (ROM) and 
assume the center of molecules can move between the walls 
and these molecules are aligned only in six particular 
directions ±x, ±y and ±z, where the notations ±1, ±2, ±3 are 
used here, respectively. By applying the required 
symmetries, it can be written: 
 

          1 2z z  ,        1 2z z   ,       3 3z z                                                

         1 2P z P z  ,    1 2P z P z                             (28)       
 

         , ,C z C z        
             13 31 32 23C z C z C z C z    ,     11 22C z C z  
                                                                                          (29)             
 
In Fig. 1, the geometry of dipolar hard ellipsoids to show 
their dipole moments and the closest approach and the 
confined ellipsoids in ROM model are presented. 
      At first, we obtain the integral equations of density 
profiles  1 z ,  1 z ,  3 z ,  3 z  from Eq. (15) as: 
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where  1 z ,  1 z ,  3 z , and  3 z  

represent density 

profiles of molecules along +x, -x, +z, and -z directions, 
respectively.  
      In the next step, we use Eq. (23)

 
for our confined fluid 

to find the integral equations for the density profiles as 
follow: 
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Fig. 1. a) Geometry of dipolar hard ellipsoids and their closest approach. b) Schematic representation of the  
                dipolar hard ellipsoids confined between two hard walls, ROM model. 
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and we obtain the polarization profiles from Eq. (24) as: 
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By solving the above equations and applying the 

boundary condition, we can obtain density and polarization 

 

profiles of confined dipolar hard ellipsoids. These boundary 

conditions depend on the orientation of the molecules, so we 

can write the number density of molecules parallel to the 

walls, ρ॥, and the molecules perpendicular to the walls, ρ+ , 

as: 
0

2

0
2

hfor z b

hfor z a





  
 

  


 
   

  

  
                                           (42)

          

 

Since these molecules are confined between two parallel 

hard walls, the density profiles are zero outside the walls 

and the total density is the sum of directional densities, so 

we have only parallel and perpendicular densities and we 

can write [2]: 

       
6

1
total z z z z


   


  

                                (43) 

where     
 

                  

                 3 3 1 1, 2 2z z z z z z             
                                                                                          (44) 
 
As explained, we can obtain the number density and 
polarization profiles by using boundary conditions, Eq. (42), 
and the DCF for the fluid that was introduced in previous 
section. 
 
The Effect of External Electric Field  
                                                                                                     
      If the molecules are inserted in an electric field,  E r

  , 

the following term is added to the excess grand potential:  
 

         .drE r P r 
  

                                                        (45) 
 
Using Eq. (16) we can write

 
Eq. (45) as below: 
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Fig. 2. The  density  profiles of  molecules parallel to the walls for k = 2.2, ρb
* = 0.239 and h* = 8. The solid  

            curve is calculated for dipolar hard ellipsoids for zero order and dots are calculated for the first order  
            in polarization.
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Fig. 3. As Fig. 2 but for the density profiles of molecules perpendicular to the walls.

 



 

 

 

Density and Polarization Profiles of Dipolar Hard Ellipsoids Confined/Phys. Chem. Res., Vol. 5, No. 1, 153-166, March 2017. 

 161 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-4 -3 -2 -1 0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 to
ta

l

z*  
                              
                                        Fig. 4. As Fig. 2 but for total number density of molecules. 
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Fig. 5. The  density profiles of molecules parallel  to  the walls for k = 2.2, ρb

* = 0.239  and  h* = 15.                       
           The solid curve is calculated for dipolar hard ellipsoid for zero order, and dots are calculated  

            for the first order in polarization and dashed are in the presence of electric field. 
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Fig. 6. As Fig. 5 but for the density profiles of molecules perpendicular to the walls.
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Fig. 7. As Fig. 5 but for the total number density profiles of molecules. 
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         cosm d rE r r  


   

  
                                        (46) 

                                                                        
If we assume that the electric field is along the z axis, 
perpendicular to the walls, the integral equations (36) and 
(37) are changed and the terms -βmE0 +and βmE0 are added 
to their right hand side, respectively. E0 is the magnitude of 
electric field. 
 
RESULTS AND DISCUSSION 
 
      The obtained integral equations could be solved 
numerically using the ROM model with N = 6 to obtain the 
density and polarization profiles of a dipolar hard ellipsoidal 
fluid confined between two parallel hard walls. As 
described in section 2.2, the DCF of a homogeneous hard 
ellipsoidal fluid is obtained using Eq. (25). In our 
calculations, these molecules can only be aligned in 6 
directions. It is assumed that the major axes of the 
molecules are parallel or perpendicular to the walls. We 
obtained the density and polarization profiles for two 
different values of the reduced wall separation. At first, we 
solved the coupled integral Eq. (30) to (33) numerically to 
obtain the density profiles. The obtained reduced number 
densities of the molecules parallel and perpendicular to the 
walls are plotted in Figs. (2) and (3),  the total density 
profile of the molecules is shown in Fig. (4). These densities 
are calculated for elongation k = 2.2, reduced bulk density 
ρb* = 0.239 and reduced separation of the walls h* = h/2b = 
8. In these figures, the density profiles are also compared 
with the density profiles obtained by the first order 
approximation in polarization, Eqs. (34)-(37). When the 
major axes of the molecules are perpendicular to the walls, 
there are relatively large discrepancies at maximum and 
minimum of the density profiles while for the molecules 
parallel to the walls the differences are small. As clearly 
seen in these figures, the existence of higher peaks in the 
density oscillation is due to considering first order 
approximation in polarization. Then, by using Eqs. (34)-
(41), we obtained the number density and polarization 
profiles of this system. Similar to Figs. (2)-(4), in Figs. (5), 
(6) and (7) the number density profiles are plotted as a 
function of z* = z/2b for k = 2.2, ρb* = 0.239 and h* = 15. 
As seen in these figures, for the density profiles calculated  

 
 
from the first order in polarization, there are some shifts in 
the density curves compared to the case of zero order. When 
the major axes of the molecules are perpendicular to the 
walls, there is also a shift in the density in vertical direction 
while for the molecules parallel to the walls these 
differences are small. In these figures, the density profiles of 
dipolar hard ellipsoidal fluid in the presence of electric field 
are also shown. The values chosen for the reduced dipole 
moment and the reduced electric field are given by:  
 

      

32
*2 * 0 0

03
0

4
0.5, 0.4

4
Emm E

m
 

 
   

          (47) 

                                                             
 

In this case, the calculated density profiles are plotted in 
Figs. (5)-(7) and the polarization profiles are shown in Figs. 
(8) and (9) for two reduce separations of the walls. In these 
figures the polarization profiles of dipolar hard ellipsoidal 
fluid in the presence and absence of electric field

 
are 

compared.  

According to the equation ( )P V
    

 [27] for our 

system, we can write 
 

       
( )P
h


  
 

                                                             (48)                                                                                    

where hα is the distance between the hard walls and P  is 
the partial pressure of the ellipsoids which make angle θα 
with respect to z-axis. Inserting Eq. (14) into Eq. (48) and 
after some mathematics, the pressure at the wall can be 
obtained as: 
 

      
( ) ( ) wP h P h



                                               (49) 
                                                                                
In this equation <ρw > is the average number density of the 
hard ellipsoids in all directions at the hard wall. Eq. (49) is 
satisfied by any fluid at contact with a hard surface [28]. As 
our calculation shows, we can obtain the partial reduced 
pressure from the directional densities of molecules at the 
wall ρα

ω as: 
 

      
 ( )P h h

  
                                                           (50)    
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In Table 1, the calculated pressures and densities of dipolar 
hard ellipsoidal fluid at hard wall for two different 
separations of the walls are shown. 
 The density and polarization profiles of hard dipolar fluid 
confined between hard walls have been reported in 
reference [14]. In that  article, it was shown that the spheres 
are located near the hard wall as a layer and the maximum 
of the profiles are located in the distance bigger than the 
diameter of sphere from the wall. About the dipolar hard 
ellipsoids, in ROM model, for the ellipsoids parallel to the 
wall, the maximum of the density profiles is located at the 
3b distance from the actual wall and for the ellipsoids 
perpendicular to the wall, the maximum of the density 
profile is located at 3a distance from the wall. These 
locations are definitely affected by each other, because the 
parallel and perpendicular ellipsoids are existed together. .       
 
CONCLUSIONS 
 
      The HNC density functional theory is used to consider 
dipolar hard ellipsoids confined between two parallel hard 
walls. At the first step, the excess grand potential with 
respect to its bulk as a unique functional of density was 
introduced. The DCF of homogeneous dipolar hard 
ellipsoidal fluid is the main required input. Then, we used 
two approximations for the density, zero and first order in 
polarization, to find the excess grand potential. The 
minimization of the excess grand potential with respect to 
the density and polarization gave us some coupled integral 
equations to obtain the number density and polarization 
profiles. We also used ROM model to find the density and 
polarization profiles between two parallel hard walls. We 
obtained density and polarization profiles for two different 
wall separations. The results showed that  for  the  zero  and 

 
 
 
 
 
 
 
 
 
 
 
 
first order in polarization, the location of maximums and 
minimums of the density profiles are not changed but their 
amounts become bigger in the case of first order of 
polarization. Finally, when we applied the electric field, the 
location and the amount of the peaks of extremums, with 
respect to the  absence of electric field, are not changed very 
much but the polarization profiles perpendicular to the walls 
are changed and become larger in the presence of electric 
field.    
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