Regular Article

Phys. Chem. Res., Vol. 5, No. 3, 497-504, September 2017 DOI: 10.22036/pcr.2017.72959.1348

The Effect of Substrate on Structural and Electrical Properties of Cu₃N Thin Film by DC Reactive Magnetron Sputtering

A. Razeghizadeh^a, M. Mahmoudi Ghalvandi^a, F. Sohilian^b and V. Rafee^{a,*}

^aDepartment of Physics, Faculty of science, Payame Noor University, Iran ^bDepartment of Physics, Faculty of science, Kharazmi University, Iran (Received 15 January 2017, Accepted 8 April 2017)

The aim of this paper is to study the effect of substrate on the Cu_3N thin films. At first, Cu_3N thin films are prepared using DC magnetron sputtering system. Then, structural properties, surface roughness, and electrical resistance are studied using X-ray diffraction (XRD), the atomic force microscope (AFM) and four-point probe techniques, respectively. Finally, the results are investigated and compared for glass and Si substrates. The results show a phase transition in orientation from (111) and (100) planes to (200) plane when the substrate of the sample is changed from glass to Si. Also, the grain size of deposited particles on films is increased by changing the substrate from glass to Si. Then, AFM results show that surface roughness on Si substrate is more than that on the glass substrate. Finally, four-point probe techniques show that surface electrical resistivity is increased sharply by changing the substrate from silicon to glass.

Keywords: DC reactive magnetron sputtering, Thin films, Cu₃N, X-ray diffraction, Atomic force microscopy

INTRODUCTION

The Cu₃N is a semiconductor with an indirect energy band gap of 0.9 eV, on the basis of theoretical calculations, and 1.2 eV - 1.9 eV on the basis of experiments [1-3]. Juza and Hahn obtained Cu₃N powder by heating powder of CuF₂ at 280 °C in NH₃ for the first time in 1939 [4]. Also, at first time, Terao studied the structure of Cu₃N by X-ray diffraction in 1973 [5]. Over the last decade, Cu₃N thin films have been the subject of many studies [6-9]. The thermal, structural, electrical and optical properties of Cu₃N thin films were the main focus of these studies [9-14].

The thin films of Cu_3N were deposited using different experimental methods such as chemical vapor deposition (CVD) [15], sputtering [16], pulsed laser [17], and Atomic layer deposition (ALD) [18].

The sputtering method is among the well-known methods used for the deposition of Cu_3N [11-16]. This technique is very controllable and exact for making thin

films [19]. The DC reactive [20,21] and RF [22-24] are different methods of the sputtering method.

The Cu₃N thin films are very interesting because they have attractive properties and a unique crystal structure [8]. The Cu₃N has a cubic anti-ReO₃ type crystal structure and a lattice constant equal to 3.815 Å [24-25]. The Cu atoms do not occupy exactly the closely packed sites on (111) planes in this structure, therefore, this structure has a large number of empty sites [24] leading to the higher tunable properties of this material. The optical and electrical properties of Cu₃N will be changed considerably if other atoms stay on these empty sites. The Cu₃N has been doped with different elements such as Ti [26,27], La [28], O [15], Zn [29], H [30] and N [31]. Therefore, researchers have focused on this material in recent years and investigated structural [32,33], optical [32,34], electrical [32,34] and thermal [35] properties.

Because of its small indirect optical band gap, Cu₃N has been introduced as a new material for optical storage and high-speed integrated circuits devices [22]. The optical reflections of this material are in the visible and infrared

^{*}Corresponding author. E-mail: V.Rafee@Pnu.ac.ir

range [15]. Since the optical reflections of Cu_3N are smaller than pure copper [15], this material is suitable for generating microscopic copper lines by laser writing using electron beam without photolithography process [36]. Since Cu_3N is decomposed in low temperatures (100-470 °C), it is converted to metal with the laser beam radiation locally. Therefore, it can be used in microelectronics and printing industry [15]. Most recently, it was found that this material can be used as a cathode catalyst in alkaline fuel cells [37] or as a negative electrode in the lithium-ion rechargeable battery because it has a good lifetime [38]. This material, as a semiconductor, is used as a substrate for hybrid organicinorganic solar cells [15].

Many research activities have been carried out on important parameters such as thermal stability, optical gap and electrical resistance of copper nitride. For example, through changing the sputtering parameters, electric resistance values of $2 \times 10^{-3} \Omega$ cm to $10^3 \Omega$ cm and optical band gap values of 0.8 eV - 1.9 eV have been reported [15]. In this paper, we study the effect of substrate on structural, morphological and electrical resistance properties of Cu₃N nanolayers. To do so, we prepared Cu₃N thin films with different substrates (glass and Si) using DC reactive magnetron sputtering. Then, we studied structural, morphological and electrical resistance properties using XRD, AFM, and four-point probe analysis, respectively.

EXPERIMENTAL METHOD

The Cu₃N thin film is prepared as follow. At first, a pure 99.95% copper target with 101.6 mm diameter and 8 mm thickness is polished using soft sanding and cleaned by aston and ethanol. Then, it is installed on the magnetron of the sputtering system. The substrates (glass, Si), with 1 cm \times 1 cm size and 1 mm thickness, are cleaned perfectly in ethanol and aston solution using an ultrasonic cleaner. In this process, *Ar* gas (99.99%) with different pressure ratios is used as the working gas and *N*₂ gas (99.99%) as the reactive gas. The chamber pressure is reduced to vacuum mod (3.8 \times 10⁻⁴ mbar) and *Ar* gas is imported to the chamber with 4.12 \times 10⁻³ mbar pressure. The plasma is created in 4.5 \times 10⁻³ mbar pressure, and the reactive *N*₂ gas is imported into the chamber with 4.2 \times 10⁻³ mbar pressure. During sputtering, the power of the system is 0.13 kW and

chamber work pressure is 8.7×10^{-3} mbar (P (Ar + N₂)) and temperature of the substrates is 50 °C. Table 1 shows the details of this process.

Thin films are deposited and their crystal structures are analyzed using grazing angle X-ray diffraction (XRD) with Cu Ka radiation (D8 advance model by Brucker Company). The morphology of the films is analyzed using AFM (AFM: DME DS-95-50) and finally, the electrical resistance properties are analyzed using a four-point probe (196 sys DMM model by the keithley company).

RESULTS AND DISCUSSIONS

Structure Properties

XRD analysis. To investigate the structure of these thin films and calculate their crystallization structure, the X-ray diffraction measurement was carried out using an X-Pert Brucker, in 20 range 10°-100° using Cu K α radiation of wavelength $\lambda = 1.5406$ Å operating.

The size of crystal was calculated using the Scherrer equation [39].

$$D = \frac{k\lambda}{\beta\cos\theta} \tag{1}$$

where *D* is the average crystalline size, λ is the applied Xray wavelength, k = 0.98 is a constant, θ is the diffraction angle in degree and β is the full width at half maximum (FWHM) of the diffraction peak observed in radians. Figure 1 shows the XRD patterns of the samples deposited on silicon and glass substrates. The main peaks of diffracted X-Ray photons can be seen from (100), (111) and (200) planes of Cu₃N, at 2 θ equal to 23, 41 and 47 degrees, respectively.

By changing the substrate from glass to Si, the intensity of the peaks related to X-ray photon diffraction was decreased in (100) and (111) planes and was increased in (200) plane. Table 2 shows the grain size of Cu₃N thin films deposited on the silicon and glass substrates.

Analysis of the results (obtained by the xpert Highscor plus software) shows a phase transition in orientation from (111) and (100) planes to (200) plane when the substrate of the sample is changed from Si to glass. Also, the grain size of deposited film increases with changing substrate from The Effect of Substrate on Structural and Electrical Properties/Phys. Chem. Res., Vol. 5, No. 3, 497-504, September 2017.

Scale	N ₂ pressure	Ar pressure	Power	Substrate temperature	Working pressure P(Ar+N ₂)
	(mbar)	(mbar)	(W)	(°C)	(mbar)
Value	4.2×10^{-3}	4.12×10^{-4}	0.13	50	8.7×10^{-4}

 Table 1. Working Terms for Deposition of Cu₃N Thin Films

Fig. 1. X-ray diffraction spectrums from the deposited films on silicon and glass substrates.

Substrate	Angle	Grain size (nm)	lattice constant (Å)
	23		
Si	41	7.6	3.79
	47		
	23		
Glass	41	11.3	3.79
_	47		

Table 2. Lattice Constant and Grain Size of the Cu₃N Thin Film Deposited on Glass Substrate

Razeghizadeh et al./Phys. Chem. Res., Vol. 5, No. 3, 497-504, September 2017.

Fig. 2. AFM image of Cu_3N thin film deposited on glass substrate.

Fig. 3. AFM image of Cu₃N thin film deposited on Si substrate.

Substrate	S _a	$\mathbf{S}_{\mathbf{q}}$	\mathbf{S}_{dq}	S _{tr}	S _{dr}
	(nm)	(nm)			
Si	5.67	7.16	0.48	0.23	10.90%
Glass	3.30	4.22	0.35	0.73	5.78%

Table 3. AFM Analysis Image of Cu₃N Thin Film Deposited on Si Substrate

Table 4. Surface Resistivity of Cu₃N Thin Film Deposited on Si Substrate

Substrate	Rs	Current	Voltage
	(ΩCm)	(A)	(v)
Si	3.07629×10^3	10-3	0.7
Glass	4.3947×10^{3}	10-3	1

glass to Si.

In the present study, the lattice constant is the same for the samples that Cu_3N thin films deposited on silicon and glass substrates. This result may be due to the difference in nature of two substrates; an amorphous for glass substrate and non-amorphous for silicon substrate.

AFM analysis. The surface morphology of the samples was studied using atomic force microscopy (AFM). The scanning area is $2 \times 2 \mu m$. The results of Cu₃N thin films deposited on silicon and glass substrates are shown in Figs. 2 and 3, respectively.

Figures 2 and 3 show the surface roughness of Cu_3N thin film deposited on the glass and Si substrate, respectively. The figures show that surface roughness and the surface area are changed with changing the substrate. Table 3 shows the AFM analysis details of the Cu_3N thin film deposited on the glass and Si substrates, where S_a is the average roughness, S_q is the standard deviation (root mean square), S_{tr} is the surface isotropy, S_{dq} is the gradient of root mean square, and S_{dr} is the percentage of surface area.

The AFM analysis shows that roughness of Cu_3N thin film deposited on Si is more than that deposited on glass. Furthermore, Table 3 shows that the silicon substrate will cause the grain size to be increased, subsequently the density increases that leads to increasing the layer density. So, the refractive index of the layer increases. A layer of the glass substrate is more regular texture, so it has a more isotropic surface than the silicon substrate layer. Furthermore, the silicon substrate attracts more light and has a harder surface.

The results of Table 3 show that samples with glass substrate have smaller the average roughness, the standard deviation, the gradient of root mean square and the percentage of surface area compared to the samples with Si substrate. Also, the results indicate that the surface isotropy of the samples on the glass substrate is more than that of the samples with Si substrate. We think this observation originates from the fact that glass is an amorphous material.

Electrical Properties

Four-point probe techniques. The surface electrical resistivity of Cu_3N thin films prepared at various substrates was measured at room temperature. The surface resistivity of the films is shown in Table 4 for both samples. The surface electrical resistivity is increased sharply with changing the substrate from silicon to glass. We think this observation may be due to the difference in nature of two substrates which is insulator for a glass substrate but

semiconductor for a silicon substrate.

CONCLUSIONS

The Cu₃N thin film is prepared using reactive DC sputtering, then the effect of the substrate is studied on properties of these thin films. The results of XRD analysis show a phase transition in orientation from (111) and (100)planes to (200) plane when the substrate of the sample is changed from glass to Si. Also, the grain size of deposited film increases with changing substrate from glass to Si. The results of AFM analysis show that roughness and the grain size of the Cu₃N thin film deposited on Si are more compared to the Cu₃N thin film deposited on glass. Therefore, the layer density is increased. Also, the refractive index of these thin films is increased with increasing the density. The thin film with silicon substrate has a more isotropy compared to thin film with the glass substrate. Also, the silicon substrate attracts more light and has a harder surface. The surface electrical resistivity of Cu₃N thin films is increased sharply with changing substrate from silicon to glass, because the glass substrates are insulator but the silicon substrates are semiconductor.

REFERENCES

- Gordillo, N.; Gonzalez-Arrabal, R.; Alvarez-Herrero, A.; Agullo-Lopez, F., Free-carrier contribution to the optical response of N-rich Cu3N thin films, *J. Phys. D Appl. Phys*, 2009, 42, 165101, DOI: http://dx.doi.org/ 10.1088/0022-3727/42/16/165101.
- Borsa, D. M.; Boerma, D.O., Growth, structural and optical properties of Cu3N films, *Surf. Sci.*, 2004, 548, 95-105, DOI: http://dx.doi.org/10.1016/j.susc.2003.10.053.
- [3] Fendrych, F.; Soukup, L.; Jastrabik, L.; Šicha, M.; Hubička, Z.; Chvostova, D.; Tarasenko, A.; Studnička, V.; Wagner, T., Cu₃N films prepared by the low-pressure rf supersonic plasma jet reactor: Structure and optical properties. *Diamond and Related Materials*, **1999**, *8*, 1715-1719. DOI: http://dx.doi.org/ 10.1016/S0925-9635 (99)00063-1.
- [4] Juza, R.; Hahn, H., Kupfernitrid metallamide und metallnitride. vii. Zeitschrift Für Anorganische und

Allgemeine Chemie, 1939, 241, 172-178.

- [5] Terao, N., Study of copper nitride, Cu₃N using electron-diffraction. Comptes rendus hebdomadaires des Seances de L cademie des. *SCI. Serie B*, 1973, 277, 595-598.
- [6] Rahmati, A.; Bidadi, H.; Ahmadi, K.; Hadian, F., Ti substituted nano-crystalline Cu₃N thin films, J. Coating. *Technol. Res.*, 2011, *8*, 289, DOI: 10.1007/ s11998-010-9279-9.
- [7] Rahmati, A.; Ahmadi, K., Effect of sputtering power on structural, morphological, chemical, optical and electrical properties of Ti: Cu3N nano-crystalline thin films. *Eur. Phys. J. Appl. Phys*, **2012**, *60*, 30302, DOI: http://dx.doi.org/ 10.1051/epjap/2012120247.
- [8] Matsuzaki, K.; Okazaki, T.; Lee, Y. S.; Hosono, H.; Susaki, T., Controlled bipolar doping in Cu₃N (100) thin films, *App. Phys. Lett*, **2014**, *105*, 222102, DOI: http://dx.doi.org/10.1063/1.4903069.
- [9] Ji, A. L.; Lu, N. P.; Gao, L.; Zhang, W. B.; Liao, L. G.; Cao. Z. X., Electrical properties and thermal stability of Pd-doped copper nitride films, *J. Appl. Phys.*, **2013**, *113*, 043705, DOI: http://dx.doi.org/10.1063/1.4788905.
- [10] Yue, G. H.; Yan, P. X.; Wang, J., Study on the preparation and properties of copper nitride thin films, *J. Cryst.. Growth*, **2005**, *274*, 464-468, DOI: http:// dx.doi. org/10.1016/j.jcrysgro.2004.10.032.
- [11] Zhu, W.; Zhang, X.; Fu, X.; Zhou, Y.; Luo, S.; Wu, X., Resistive-switching behavior and mechanism in copper-nitride thin films prepared by DC magnetron sputtering, *Phys. Status. Solid A*, **2012**, *209*, 1996-2001, DOI: 10.1002/pssa.201228175.
- [12] Ghosh, S.; Singh, F.; Choudhary, D.; Avasthi, D. K.; Ganesan, V.; Shah, P.; Gupta, A., Effect of substrate temperature on the physical properties of copper nitride films by rf reactive sputtering. *Surf. Coat. Tech.*, **2001** *142*, DOI: 1034-1039. http://dx.doi.org/ 10.1016/S0257-8972 (01)01091-X.
- [13] Du, Y.; Ji, A. L.; Ma, L. B.; Wang, Y. Q.; Cao, Z. X., Electrical conductivity and photo reflectance of nanocrystalline copper nitride thin films deposited at low temperature, *J. Cryst. Growth*, **2005**, *280*, 490-494, DOI: http://dx.doi.org/10.1016/j.jcrysgro. 2005.03.077.

- [14] Gallardo-Vega, C.; De la Cruz, W., Study of the structure and electrical properties of the copper nitride thin films deposited by pulsed laser deposition. *Appl. Surf. Sci.*, 2006, 252(22), 8001, DOI: http://dx.doi.org/10.1016/j.apsusc.2005.10.007.
- [15] Fallberg, A., Chemical vapour deposition of undoped and oxygen doped copper nitride, Acta universitatis upsaliensis, digital comprehensive summaries of upsala dissertations from the faculty of science and technology, **2010**, *691*, 52.
- [16] Nosaka, T.; Masaaki, Y.; Akio, O.; Soichi, O.; Yoshikazu, N., Copper nitride thin films prepared by reactive radio-frequency magnetron sputtering, *Thin. Solid. Films*, **1999**, *348*, 8-13, DOI: http://dx.doi.org/ 10.1016/S0040-6090 (98)01776-3.
- [17] Ashfold, M. N.; Claeyssens, F.; Fuge, G. M.; Henley, S. J., Pulsed laser ablation and deposition of thin films, *Chem. Soc. Rev*, **2004**, *33*, *23*, DOI: 10.1039/ B207644F.
- [18] Juppo, M.; Ritala, M.; Leskelä, M., Use of 1,1dimethylhydrazine in the atomic layer deposition of transition metal nitride thin films, *J. Electrochem. Soc.*, **2000**, *147*, 3377, DOI: 10.1149/1.1393909.
- [19] Kelly, P. J.; Arnell, R. D., Magnetron sputtering: a review of recent developments and applications, *Vacuum*, **2000**, *56*, 159-172.DOI: http://dx.doi.org/ 10.1016/S0042-207X (99)00189-X.
- [20] Bai, Q.; Jianping, Y., Yongtao. L.; Lixia, W.; Haiyun, W., Shanling, R., Shengli, L., Wei, H., Effect of N2gas flow rates on the structures and properties of copper nitride films prepared by reactive DC magnetron sputtering. *Vacuum*, **2013**, *89* 78. DOI: http://dx.doi.org/10.1016/j.vacuum.2011.10.020.
- [21] Zhao, Y.; Jinyang, Z.; Tao, Y.; Jian, Z.; J, Y., Enhanced write-once optical storage capacity of Cu₃N film by coupling with an Al₂O₃ protective layer. *Ceram. Int*, **2016**, *42* 4486-4490. DOI: http:// dx.doi.org/10.1016 /j.ceramint.2015.11.136.
- [22] Wang, J.; Chen, J. T.; Yuan, X. M.; Wu, Z. G.; Miao, B. B.; Yan, P. X., Copper nitride (Cu₃N) thin films deposited by RF magnetron sputtering, *J. Cryst. Growth*, **2006**, *286*, 407-412. DOI: http://dx.doi.org/ 10.1016/j.jcrysgro.2005.10.107.
- [23] Ghosh, S.; Singh, F.; Choudhary, D.; Avasthi, D. K.;

Ganesan, V.; Shah, P.; Gupta, A., Effect of substrate temperature on the physical properties of copper nitride films by Rf reactive sputtering. *Surf. Coatings Technol.*, **2001**, *142*, 1034-1039. DOI: http://dx.doi.org/10.1016/S0257-8972 (01)01091-X.

- [24] Dorranian, D.; Dejam, L.; Mosayebian, G., Optical characterization of Cu₃N thin film with Swanepoel method. *J. Theor. Appl. Phys*, 2012, 6(1), 1-9. DOI: DOI: 10.1186/2251-7235-6-13.
- [25] Yue, G. H.; Yan, P. X.; Liu, J. Z.; Wang, M. X.; Li, M.; Yuan, X. M., Copper nitride thin film prepared by reactive radio-frequency magnetron sputtering, *J. Appl. Phys.* 2005, *98*, 103506-103513. DOI: 10.1063/ 1.2132507.
- [26] Rahmati, A.; Bidadi, H.; Ahmadi, K.; Hadian, F., Ti substituted nano-crystalline Cu₃N thin films, *J. Coat. Technol. Res.*, 2010, *8*, 289. DOI: 10.1007/s11998-010-9279-9.
- [27] Rahmati, A., Ti-containing Cu₃N nanostructure thin films: Experiment and simulation on reactive magnetron sputter-assisted nitridation. *Plasma Science, IEEE Transactions on*, **2015**, *43*, 1969. DOI: 10.1109/TPS.2015.2422310.
- [28] Xingao, L.; Jianping, Y.; Anyou, Z.; Zuobin, Y.; Zuli, L.; Kailun, Y., La-doped copper nitride films prepared by reactive magnetron sputtering, *J. Mater. Sci. Technol.*, 2009, 25, 233-236.
- [29] Gao, L.; Jin, A. L.; Zhang, W. B.; Cao, Z. X., Insertion of Zn atoms into Cu₃N lattice: Structural distortion and modification of electronic properties, *J. Cryst. Growth*, **2011**, *321*, 157-161. DOI: http:// dx.doi.org/10.1016/j.jcrysgro.2011.02.030.
- [30] Guangan, Z.; Pengxun, Y.; Zhiguo, W.; Jun, W.; Jiangtao, C., The effect of hydrogen on copper nitride thin films deposited by magnetron sputtering, *Appl. Surf. Sci*, **2008**, 254, 5012-5015. DOI: http:// dx.doi.org/10.1016/j.apsusc.2008.01.156.
- [31] Cho, S., Effect of nitrogen flow rate on the Properties of copper nitride thin films, *J. Nanosci. Nanotechnol.*, 2014, 14, 5198. DOI: https://doi.org/10.1166/jnn. 2014.8364.
- [32] Yang, J. B.; Li, X. F.; Li, X. A.; Yang, J. P.; Yang, T.; Gu, M. F., Structure, electrical, optical and Magnetic properties of Mn-doped copper nitride thin films

deposited by radio frequency magnetron sputtering, *Adv. Mat. Res.*, **2014**, *893*, 519-523. DOI: 10.4028/ www.scientific.net/AMR.893.519.

- [33] Ghoohestani, M.; Karimipour, M.; Javdani, Z., The effect of pressure on the physical properties of Cu3N, *Phys. Scripta*, **2014**, *89*, 035801. DOI: http:// dx.doi.org/10.1088/0031-8949/89/03/035801.
- [34] Caskey, C. M.; Richards, R. M.; Ginley, D. S.; Zakutayev, A., Thin film synthesis and properties of copper nitride, a metastable semiconductor, *Mater. Horizons*, 2014, *1*, 424. DOI: 10.1039/C4MH00049H.
- [35] Gonzalez-Arrabal, R.; Nuria Gordillo, M.; Martín-González, S.; Ruiz-Bustos, R.; Agullo-Lopez, F., Thermal stability of copper nitride thin films: The role of nitrogen migration. *J. Appl. Phys.*, **2010**, *107*, 103513, DOI: http://dx.doi.org/10.1063/1.3369450.
- [36] Maya, L., Covalent nitrides for maskless laser writing

of microscopic metal lines. In MRS Proceedings, Vol. 282, Cambridge University Press, 1992, p. 203.

- [37] Wu, H.; Chen, W., Copper nitride nanocubes: sizecontrolled synthesis and application as cathode catalyst in alkaline fuel cells. J. Am. Chem. Soc., 2011, 133, 15236-15239. DOI: 10.1021/ja204748u.
- [38] Fan, X.; Li, Z.; Meng, A.; Li, C.; Wu, Z.; Yan, P., improving the thermal stability of Cu₃N films by addition of Mn, *J. Mater. Sci. Technol.*, **2015**, *31*, 822-827. DOI: http://dx.doi.org/10.1016/ j.jmst.2015.07.013.
- [39] Razeghizadeh, A.; Elahi, E.; Rafee, V., Investigation of UV-Vis absorbance of TiO₂ thin films sensitized with the mulberry pigment cyanidin by sol-gel method. *Nashrieh Shimi va Mohandesi Shimi Iran.*, 2016, 35, 1-8.