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      In this research, the performance and kinetics of an iron/manganese oxide catalyst in a fixed-bed reactor is studied through the Fischer-
Tropsch synthesis. The ranges of the operating conditions are P: 1-12 barg, T: 513-553 K, H2/CO ratio: 1-2 and GHSV: 4200-7000 
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hSTPcm /)(3 . The effects of the independent variables on the Fischer-Tropsch synthesis product are analyzed using a statistical model 

based on the experimental data. The response surface methodology and artificial neural network are used to model the experimental data 
for the carbon monoxide conversion (CO% conversion) and CO consumption rate. Some of the statistical parameters such as correlation 
coefficient and mean square error are calculated to demonstrate the capability and sensitivity analysis of methods. The obtained results 
from the statistical methods show a good agreement with the experimental data. It is shown that the results of artificial neural network are 
more accurate than those of the response surface methodology. Moreover, the optimal conditions are obtained from the maximum amount 
of CO% conversion at P = 8 barg, T = 559.5 K, H2/CO = 2.5 and GHSV = 7325.2 
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consumption rate of CO happens at P = 8 bar, T = 568 K, H2/CO = 2.5 and GHSV = 2800 









catg
hSTPcm /)(3 . Finally, the entire quadratic 

equations for all of the variables and optimal conditions for the responses are explained, respectively. 
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INTRODUCTION 
 
      In recent years, decreasing the energy resources has 
made governments search and replace alternative sources 
for crude oil. Among these attempts, the process of 
transforming synthesis gas to hydrocarbon mixture 
compounds (CnH2n+2, CnH2n), called Fischer-Tropsch 
synthesis (FTS), provides a promising approach to moderate 
crude oil consumption in the world. Fischer-Tropsch 
synthesis is a catalytic process in which syngas (H2+CO) is 
converted into a variety of valuable hydrocarbons. Fischer-
Tropsch synthesis is one of the most important processes for 
production of clean and sulfur-free hydrocarbons [1-6]. FTS  
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is the second technology for the hydrocarbon production 
[7]. Catalysts play essential roles in FTS. Generally, the 
catalysts used for FTS are mainly iron and cobalt. Iron is an 
active catalyst for water-gas-shift (WGS) reaction. The 
hydrocarbon formation and WGS reaction kinetics have 
been studied systematically [8-14]. Kinetic study of FTS 
reaction based on the detailed reaction mechanism via 
Langmuir-Hinshelwood-Hougen-Watson (LHHW) method 
is very significant for the development of catalyst and 
industrial applications [15]. Typically, iron-based catalysts 
contain small amounts of potassium to improve the 
carbonization and suppress methane formation [16-18] 
and/or other metal promoters such as manganese, calcium, 
zinc, copper and magnesium to boost catalyst activity and 
selectivity [17,19]. 
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      Among the promoted iron-based catalysts, the Fe-Mn 
catalyst has some industrial record and reportedly has a 
higher olefin and middle distillation cut selectivity [19-21]. 
There are many factors for FTS product distribution, such as 
pressure, temperature, H2/CO ratio, space velocity (GHSV), 
type of catalyst, etc. Therefore, it is necessary to use the 
design of experiments to reduce costs and time. 
      There are two methods classified to model and predict 
experimental data. The first method is response surface 
methodology (RSM) which is a statistical method for 
development and formulation of experiment design. RSM 
makes a polynomial mathematical model to describe the 
relationship between the process factors and response. 
Using this method, researchers can evaluate influence of 
independent variables on the model and also the interaction 
of different parameters on each other. 
      Second method is artificial neural network (ANN) 
which is a strong model to predict and optimize chemical 
processes. ANN is a mathematical model based on the 
experimental data [22]. There are a few authors who have 
studied application of RSM and ANN techniques to predict 
and optimize the operating parameters on FTS [23-25].       
In this study, the RSM and ANN results were analyzed by 
statistical errors such as correlation coefficient (R2) and 
mean square error (MSE).  
 
EXPERIMENT 
 
Catalyst Preparation 
      The catalyst were prepared by incipient wetness 
impregnation of Al2O3 with aqueous iron nitrate 
(Fe(NO3)2.6H2O) (0.5M) (99%, Merck) and manganese 
nitrate (Mn(NO3)2.6H2O) (0.5M) (99%, Merck) solutions. 
First, the Al2O3 support was calcined before impregnation at 
600 °C in flowing air for 6 h. For 
50%Fe/50%Mn/5Mn/5wt.%Al2O3 catalyst, the iron and 
manganese nitrate solution dispersed through a spray needle 
into the support. The support dried at 120 °C C for 16 h and 
calcined at 550 °C for 6 h. The best surface area for the 
fresh catalyst was 120.2 (m2 g-1). The phases identified in 
the fresh catalyst included monoclinic Fe2O3, cubic MnO2 
and Mn2O3, orthorhombic AlFeO3 orthorhombic and 
tetragonal Al2O3. The sample after the FT reaction, 
contained     monoclinic     Fe2C,     orthorhombic     Mn2O3,  

 
 
orthorhombic Fe3C, FeFe2O4, MnAl2O4/MnO and cubic 
Al2O3. One gram of fresh, 0.15-0.25 mm (60-100 ASTM 
mesh) catalyst reached with the simulated syngas, diluted 1 
part to four with quartz of the same size. 
 
Kinetic Studies 
      A differential fixed-bed micro reactor (ID = 6 mm, 
Length = 40 mm) provided steady state kinetic data, the 
detailed description is found elsewhere [26-28]. The heat 
transfer analysis indicated an essentially isothermal catalyst 
under these operating conditions, with predicted conversion 
results based on an isothermal, pseudo-homogeneous, one-
dimensional and plug-flow model [28-30]. The schematic of 
experimental setup is shown in Fig. 1. 
      The model of equation consisting of a mass balance for 
each component is written as follows: 
 
      0

)(
 n

n r
dZ
uCd                                                           (1) 

 
where Cn is the concentration of component n (mol m-3), u 
refers to the superficial velocity (m/s), rn is the overall 
reaction rate of component n (mol/((kgcat.s)), and ρβ is the 
catalyst bed density (kgcat/m3). The overall synthesis 
reaction with the boundary conditions Cn = C0

n at reactor 
entrance (z = 0) can be written as follows: 
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where i is the average carbon chain length of the 
hydrocarbon product, and j is the average number of 
hydrogen atoms per hydrocarbon molecules. The operating 
conditions for tests were set in the following ranges: 
temperature = 513-553 (K), pressure = 1-12 (bar), GHSV = 
4200-7000 



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

catg
hSTPcm /)(3 , and H2/CO feed molar ratio = 1-

2. An equimolar atmospheric pressure, 60 (ml min-1) flow of 
H2 and N2 reduced the fresh catalyst in situ for 16 h at 300 
°C. Then, the catalyst cooled to 180 C, and flushed with 
N2. An oxygen balance determined the amount of water, 
because the TCD-GC could not analyze water accurately. 
These ideal tubular reactors have the following 
characteristics [30] 
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To minimize by-pass: 
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satisfying both relations minimized back-mixing. The 
carbon-containing products, determine CO conversion as 
follows: 
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where ni is the number of carbon atoms in product i, Mi is 
the percentage of product i, and Mco is the percentage of CO 
in feed stream. The average of reaction rate is as follows: 
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Kinetic Model Evaluation 
      The rate of syngas conversion depends on the partial 
pressure of the feed constituents, as well as temperature. In 
a reactor with the iron-based catalyst, CO absorbs more than 
H2 at temperature above 77 C [32]. Iron-based FT synthesis  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
produces both water and carbon dioxide, representing two 
important routes for oxygen removal. While CO2 has less 
effect on iron-based FT catalysts, water substantially affects 
intrinsic FT reaction rates [33,34]. Investigation evidence 
indicates that CO and water competitively absorbs on active 
sites of iron-based catalysts [35]. 
 
Response Surface Methodology 
      Response surface methodology (RSM) is a good 
statistical and mathematical technique for developing, 
improving and optimizing processes. The most extensive 
applications of RSM are particularly in situations where 
several input variables potentially influence some 
performance measure or quality characteristic of the product 
or process which is called response [36]. 
      In this work, the effect of 4 important reactor conditions,  
pressure, temperature, H2/CO ratio, and space velocity 
(GHSV), on CO conversion and consumption rate of CO 
have been studied via RSM. Finally, the results show a good 
agreement between experimental data and predicted model. 
The correlation between inputs and desired response could 
be represented as follows: 
 
      y = f(x1, x2, x3,… xn) ± ε                                                (7) 
 
where y is the response, f is the function of response, x1, x2, 

x3,…xn are the inputs variables and ε is the fitting error.  

 
Fig. 1. Schematic diagram of the experimental setup [31]. 
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      A second order regression model was employed to fit 
the collection of experimental data, in this study. This 
model can be written as follows: 
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The model regression accuracy can be evaluated by a 
coefficient obtained from the following equation: 
 
      

tot

res

SS
SSR 12                                                                  (9) 

 
Adjusted R2 is a modification of R2that adjusts the number 
of explanatory terms in model. Adjusted R2 is defined as 
following: 
 
      

tot

res
adj MS

MSR 12                                                             (10) 

 
Artificial Neural Network 
      Artificial neural network (ANN) is a powerful 
mathematical method to solve nonlinear and complex 
problems in the science applications. The back propagation 
(BP) network technique with Levenberg-Marquadt 
Algorithm (LMA) was applied, in which the gradient 
descent method minimized the sum of square of network 
errors [37,38]. An ANN network usually consists of three 
layers: input layer, output layer and intermediate or hidden 
layer and was trained in three steps: feed forward of the 
input training pattern, back propagation of the related error, 
and the weights alteration [39,40]. Generally, a neuron can 
be determined by the following equation: 
 
      

i

n

i
iii xY  
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                                                           (11) 

 
where Yi is the net input to the nod i in hidden or output 
layer, ωi is the weight of component i, θi is bias and xi is the 
input parameter as i. There are many factors to design a 
good ANN, such as the number of neurons in hidden layer, 
transfer function selection, training function algorithm and 
the number of input variables. 

 
 
RESULT AND DISCUSSION 
 
      The effect of four input variables on CO conversion and 
consumption rate or CO (-rco) reaction was performed based 
on central composite design (CCD). These variables are 
pressure, temperature, H2/CO ratio and space velocity 
(GHSV).      Table 1 shows the prediction capability of 
RSM, and ANN models compared to the experimental data 
for (CO% conversion). 
                   Table 2 shows the prediction capability of RSM, 
and ANN models compared to the experimental data for (-
rco). The normal probability plot of residual was used to 
verify the model. If plot is normally distributed, then all 
points in this plot generally form a straight line. Fig. 2 
shows which of two residual plots of responses were 
normally distributed. 
      The analysis of variance (ANOVA) was employed to 
evaluate the significance of model parameters, and 
insignificant ones were eliminated considering p-values. 
The fitness of model was determined by ANOVA. Tables 3, 
and 4 show the T-value and corresponding P-values, along 
with estimation coefficients for two responses. Lack-of-fit 
tests assess the fit of model. RSM automatically performs 
the pure error lack of fit test when data contain replicates 
(multiple, observation with identical x-values). The P-value 
is the probability of obtaining a statistical test that is at least 
as extreme as the calculated value is the null hypothesis is 
true. 
      The lesser values for P-value and the larger values for T-
value indicated that the corresponding variables would be 
more significant. The response surface plots for (CO% 
conversion) are shown in Fig. 3. The full quadratic relating 
equations for (CO% conversion) with the four independent 
variables, namely pressure (x1), temperature (x2), H2/CO 
ratio (x3) and GHSV (x4), are as follows: 
 
Yield (CO% conversion) = 0.246x1 + 3.385x2 - 6.91x3 +  
       0.0043x4 + 0.0012x3x4 - 0.003x2

2 - 0.000001x2
4 - 945   

                                                                                          (12) 
 
Fig. 5 shows the influence of the four variables on the 
response (-rco). Generally, pressure and temperature had 
positive effect on the  response,  also  (-rco)  increased  when  



 

 

 

The Application of Hybrid RSM/ANN Methodology/Phys. Chem. Res., Vol. 5, No. 3, 585-600, September 2017. 

 589 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Table 1. Kinetic, ANN and RSM Results for Fe-MN/Al2O3 Catalyst in Fixed-bed Reactor for (CO% Conversion) 

Run no. P (x1) T (x2) H2/CO (x3) GHSV(x4) Experimental ANN RSM 

1 12 523 1 4200 7.44 7.353 8.52 

2 4 523 2 4200 4.3 4.682 5.12 

3 8 523 2 4200 6.83 6.801 5.24 

4 1 523 2 4200 5.19 4.952 5.91 

5 1 523 1.5 4200 5.86 6.225 6.17 

6 12 523 1.5 4200 8.29 8.353 9.08 

7 8 533 2 5000 7.67 7.758 8.45 

8 1 533 2 5000 7.75 7.227 6.54 

9 1 523 1.5 5000 7.09 6.524 8.13 

10 8 533 1.5 5000 8.28 8.450 9.56 

11 12 533 1.5 5000 9.11 9.034 8.16 

12 1 533 1.5 5000 7.78 8.123 9.14 

13 1 543 1 5000 10.19 10.45 12.1 

14 8 513 1 5000 3.16 3.853 3.51 

15 8 513 1.5 5000 4.03 4.967 4.70 

16 4 513 1.5 5000 4.66 4.212 3.85 

17 12 513 1 6000 5.29 5.832 4.82 

18 1 513 1 6000 1.29 1.651 1.51 

19 1 513 2 6000 3.36 3.125 2.36 

20 8 513 1.5 6000 5.41 4.873 5.95 

21 4 543 1 6000 9.73 9.126 10.87 

22 8 543 1 6000 11.16 12.10 12.8 

23 8 543 1.5 6000 12.25 12.89 13.7 

24 1 533 1 7000 5.46 5.052 4.11 

25 8 533 1 7000 9.23 9.952 10.56 

26 4 533 1 7000 6.75 6.215 7.32 

27 4 543 1 7000 8.21 7.347 7.82 

28 1 543 1 7000 7.28 7.372 7.66 

29 1 543 1.5 7000 8.53 8.661 9.15 

30 4 543 1.5 7000 8.46 8.890 8.23 
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             Table 2. Kinetic, ANN and  RSM  Results  for  Fe-MN/Al2O3  Catalyst  in  Fixed-bed  Reactor  for       
                            (-rCO  105/mol mol-1 g-1)    
                            

Run no. P (x1) T (x2) H2/CO (x3) GHSV (x4) Experimental ANN RSM 

1 12 523 1 4200 25.38 25.582 26.13 

2 4 523 2 4200 25.21 25.681 26.12 

3 8 523 2 4200 29.56 28.902 28.03 

4 1 523 2 4200 21.25 21.810 22.41 

5 1 523 1.5 4200 14.79 15.151 13.51 

6 12 523 1.5 4200 31.18 31.472 32.82 

7 8 533 2 5000 28.49 28.951 30.12 

8 1 533 2 5000 22.71 22.266 21.37 

9 1 523 1.5 5000 11.42 11.912 12.56 

10 8 533 1.5 5000 17.04 17.012 17.45 

11 12 533 1.5 5000 29.24 29.212 28.92 

12 1 533 1.5 5000 16.47 16.911 17.85 

13 1 543 1 5000 21.56 22.451 21.12 

14 8 513 1 5000 15.39 14.930 15.02 

15 8 513 1.5 5000 12.72 12.301 11.12 

16 4 513 1.5 5000 15.13 15.591 16.78 

17 12 513 1 6000 16.61 16.032 16.21 

18 1 513 1 6000 11.35 11.031 11.92 

19 1 513 2 6000 13.55 14.122 14.88 

20 8 513 1.5 6000 15.16 15.810 14.12 

21 4 543 1 6000 17.72 18.110 16.12 

22 8 543 1 6000 3.41 3.5012 4.11 

23 8 543 1.5 6000 22.74 22.211 22.12 

24 1 533 1 7000 11.64 11.901 10.12 

25 8 533 1 7000 3.68 3.551 4.754 

26 4 533 1 7000 11.91 11.252 10.12 

27 4 543 1 7000 14.77 14.121 15.76 

28 1 543 1 7000 13.26 13.781 12.11 

29 1 543 1.5 7000 12.53 12.340 14.12 

30 4 543 1.5 7000 14.1 14.543 14.54 
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H2/CO ratio rose. The full quadratic relating equation for (-
rco) is as follows: 
 
       Yield (-rCO) = -0.528x1 + 0.554x2 + 4.86x3 +  
       0.0294x4 + 1.029x1x3 - 0.000056x2x4 + x3x4 + 3.7x2

3 –  
       277.5                                                                          (13) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In optimization part, Fig. 5 shows the effect of independent 
variables on two responses. Table 4 shows the RSM 
maximization of (CO% conv.) and (-rco) with the best 
conditions of (P (bar), T (K), H2/CO and GHSV 


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Fig. 2. Normal probability plots of two responses. 
 
 
                             Table 3. Analysis of Variance (ANOVA) of the RSM Modeling for (CO% Conversion) 
 

` SE coefficient T-value P-value 

Constant 0.209 48.36 0.000 

Pressure 0.154 3.20 0.004 

Temperature 0.154 12.52 0.000 

H2/CO 0.154 0.42 0.677 

GHSV 0.154 4.66 0.000 

Temperature*Temperature 0.140 -4.87 0.000 

GHSV*GHSV 0.140 -7.12 0.000 

H2/CO*GHSV 0.189 4.66 0.000 

    

Lack-of-fit   0.218 

R-sq   98.40% 

R-sq (adj)   96.08% 
 



 

 

 

Razmjooie et al./Phys. Chem. Res., Vol. 5, No. 3, 585-600, September 2017. 

 592 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Surface plots for the effect of four variables on the response (CO% conversion). 
 
              
               Table 5. Analysis of Variance (ANOVA) of the RSM Modeling for (-rco) 
 

Terms SE coefficient T-value P-value 
Constant 0.501 37.88 0.000 
Pressure 0.446 4.56 0.000 
Temperature 0.446 8.07 0.000 
H2/CO 0.446 9.80 0.000 
GHSV 0.446 -11.90 0.000 
H2/CO*H2/CO 0.403 2.30 0.032 
Pressure*H2/CO 0.546 1.89 0.073 
Temperature*GHSV 0.546 -2.16 0.042 
H2/CO*GHSV 0.546 -2.59 0.017 
    
    
Lack-of-fit   0.304 
R-sq   97.89% 
R-sq (adj)   95.40% 
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Fig. 5. Surface plots for the effect of four variables on the response (-rco). 

 

 
Fig. 5. Optimization plots of two responses. 
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              Table 7. Maximization of Two Responses with Four Objectives 
 

Term  P T H2/CO GHSV Response 

Max. of CO% conv. 8 559.5 2.5 7325.2 14.1 

Max. of -rco 8 568 2.5 2800 67.7 
 
 
                Table 7.Determined Specifications for the Best ANN Model 
 

Algorithm Feed-forward back propagation 

Training Function Levenberg-Marquardt (trainLM) 

Hidden layer transfer function Tangent sigmoid (tansig) 

Output layer transfer function Pure line (purelin) 

Number of input layer neuron 4 

Number of hidden layer neuron 6 

Number of output layer neuron 1 
 

 

 

Fig. 6. Schematic diagram of the ANN model with input, hidden and output layers. 
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Comparison between RSM and ANN Models 
      This step presents the comparison between the 
predictive capability of RSM and ANN for two data sets, 
the experimental data  used for developing the models 
(CO% conversion) and (-rco). ANN modeling is determined 
based on four steps: 1. Preparation of the input values, 2. 
Suitable back  propagation algorithm selection, 3.  Selection  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
of a suitable number of hidden layers, 4. Training and 
validation of model. Fig. 6 shows the ANN model layers. 
Four variables were used as the input variables (P, T, H2/CO 
and GHSV), with 6 neurons as hidden layers. There are 
many types of training algorithm, and it is very difficult to 
understand which of them is efficient for ANN [2,41]. 
      The  Levenberg-Marquardt back propagation  algorithm 

 

Fig. 8. The plots of experimental data vs. ANN model for %CO conv. (left) and -rco (right). 
 

 

Fig. 8. MSE values of the developed ANN design at different epochs for the best network (best performance for (%CO  
             conv.) are 0.0285 at epoch 25 and for (-rco) is 0.1380 at epoch 14).  
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(LMP) was used to ANN design. This algorithm was the 
best choice for this work, because it was trains fast and uses 
a tansigmoid transfer function (tansig) for hidden layer, and 
linear transfer function (purline) for output layer [39]. The 
ANN specifications are shown in Table 9. 
      ANN diagrams are shown in Fig. 8 (for both of (CO% 
conversion) and (-rco) experimental data). These plots show 
the general adaptation between the experimental and 
predicted model data. To evaluate and verify the accuracy of 
models, two statistical values namely, mean square error 
(MSE) and ANN performances, are defined as the 
following: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      2exp,

1

mod, )(1 i
n

i

eli YY
n

MSE  


                                         (14) 

 
where Yi,mod, Yi,exp, Y  and n are predicted model response, 
the experimental data, the mean value of the experimental 
data and the number of experimental data, respectively. Fig. 
8 shows the variation of the MSE values for testing, 
validation and training of the developed ANN for two 
models. The best validation performance (MSE) for (CO 
conv.) is 0.0285 at epoch 25, and 0.1380 at epoch 14 for (-
rco). 

                     Table 8. All of ANN Model Performances for (CO% Conversion) and (-rco) 
 

Performance CO% Conversion -rco 

MSE (performance) 0.0285 0.1380 

Train performance 2.2498e-04 0.0082 

Validation performance 0.0292 0.5454 

Test performance 0.1750 0.4054 
 

 

 
Fig. 9. Comparison between the experimental, ANN and predicted RSM for (CO% conversion). 
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      Figures 9 and 10 that both models (ANN and RSM) 
have the ability to predict the experimental data for both 
studies. However, the predictive capability of ANN model is 
higher than that of the RSM model. This can be shown by 
evaluating the R2 and MSE for both models (ANN, RSM). 
 
CONCLUSIONS 
 
      In this study, the catalyst sample was prepared, and the 
conversion and kinetic reaction of CO over the well 
characterized catalyst was investigated. The RSM-CCD 
with four independent variables, pressure, temperature, 
H2/CO ratio and space velocity (GHSV), and ANN with six 
neurons in hidden layers were used to make pattern to 
predict the experimental data. Also, the effect of four 
independent variables on (CO% conversion) and (-rco) have 
been studied by RSM. The conversion of carbon dioxide 
growth was appreciably when pressure increased. At low 
GHSV, increase in H2/CO ratio led to the response 
reduction, but a reverse trend was observed at high GHSV. 
CO% conversion increased with increasing the temperature 
and H2/CO ratio, but at high temperature, this behavior was 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
reverse. Also, consumption rate of carbon dioxide increased 
when H2/CO ratio elevated. The consumption rate of CO 
increased appreciably when temperature rose. At low H2/CO 
ratio, the effect of pressure increasing on response was 
negligible, but in high amount of H2/CO led to rise in 
response. Furthermore, the consumption rate of CO 
collapsed when GHSV rose. These results indicated that the 
experimental data were so close to the estimated and 
predicted values by two methods, and demonstrated that the 
ANN model has a superior accuracy versus the RSM model. 
On the basis of the results, the maximum amount of 
responses were as follows: for CO% conversion was  in P = 
8 bar, T = 559.5 K, H2/CO = 2.5, and for consumption rate 
of CO was in P = 8 bar, T = 568 K, H2/CO = 2.5. Finally, 
these findings showed a high ability of the both models 
(ANN, RSM) to predict the experimental data. 
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Fig. 10. Comparison between the experimental, ANN and predicted RSM for (-rco). 
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NOMENCLATURE 
  
Cn Concentration of component n (mol m-3) 
u Superficial velocity (m/s) 
rn Overall reaction rate of component n 

(mol/((kgcat.s))) 
ρβ Catalyst bed density (kgcat/m3) 
i Average carbon chain length of the 

hydrocarbon product 
j Average number of hydrogen atoms per 

hydrocarbon molecules 
ni Number of carbon atoms in product  
Mi Percentage of product  
Mco Percentage of CO in feed stream 
Fco Input flow rate of CO (mol s-1) 
W The weight of catalyst (kg) 
Xco CO conversion percentage 
f Function of response 
x1, x2, x3,… xn RSM inputs variables 

 Fitting error 
SSres Residual sum of squares 
SStot Total sum of squares 
MSres Residual mean of squares 
MStot Total mean of squares 
Yi The net input to the nod i in hidden or 

output layer 
ωi Weight of component i 
θi Bias index 
xi Input parameter as i 
n Number of experiments 
Yi,mod Predicted model response 
Yi,exp Experimental data 
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