Regular Article

Phys. Chem. Res., Vol. 5, No. 4, 819-830, December 2017 DOI: 10.22036/pcr.2017.91172.1395

N-Heterocyclic Plumbylenes (NHPbs) at Theoretical Levels

N. Mohebi and M.Z. Kassaee*

Department of Chemistry, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran (Received 3 July 2017, Accepted 26 August 2017)

Plumbylenes are reactive intermediates whose discovery and characterizations are of great significance. Here, ten novel plumbylenes are introduced and characterized. A comparison is made between novel 1,4-di(R)tetrazol-5-plumbylenes (I_R) with their corresponding 1,3di(R) isomers (II_R), at DFT (R = H, Me, Et, *i*-Pro, and *t*-Bu). Each of the plumbylene (I_R or II_R) appears to be less stable, with a lower band gap ($\Delta E_{HOMO-LUMO}$) and a higher nucleophilicity (N) than its corresponding carbene (I'_R or II'_R). For both I_R and II_R plumbylenes, the trend of N values emerges consistent with the size of substituents (*t*-Bu > *i*-Pro > Et > Me > H). Every II_R shows a higher N than its corresponding I_R. Except II_H, each II_R shows more aromaticity than its counterpart I_R. The nucleophilicity index (N) of both I_R and II_R appears to be directly proportional to the size of R, proton affinity (PA), and plumbylene bond angles (N- $P\hat{b}$ -N); while it is inversely proportional to electrophilicity (ω), and $\Delta E_{HOMO-LUMO}$.

Keywords: N-Heterocyclic plumbylenes, Nucleophilicity, Singlet-triplet energy gaps, Substituent effects, Density functional theory

INTRODUCTION

Plumbylenes ($P\ddot{b}$ R₂) are the heaviest members of group 14 of divalents which appear to be more stable than carbenes [1,2]. Despite toxicity of lead, many reports on Nheterocyclic plumbylenes (NHPbs) have been presented [3,4]. The first examples were isolated after 1973 [5-14]. Evidently, steric protection by bulky substituents stabilize plumbylene by preventing attack on its electron-deficient center. In addition, heteroatoms adjacent to Pb induce stabilization through efficient $p\pi$ - $p\pi$ overlap between the heteroatom lone pairs and the vacant *p*-orbital of plumbylene [15]. Grimme and Hahn showed the binding of NHPbs to metals [16-20]. Lead compounds are used mainly in the formal oxidation state IV. Most of those with inorganic ligands appear with Pb(II). Divalent organolead compounds are rarely found [17-19].

We have already compared stability, in terms of singlettriplet energy separations, for halogenated five-membered cyclic conjugated plumbylenes I_x and II_x (X = H, F, Cl and Br). Every 3-halo-substituted species (II_x) appeared to be more stable than the corresponding 2-halosubstituted isomer (I_x). Every singlet I_x or II_x showed a larger plumbylene angle (C- $p\hat{\vec{b}}$ -C) than its corresponding triplet state (Fig. 1) [21]. Also, recently, one of us made a quest for Arduengo's type B-heterocyclic stable five membered ring 2,5-bis(halobora)cyclopentenplumbylene, III_x. Triplet III_x is assumed to have a planar geometry with a dihedral angle of about zero degree. In contrast, its corresponding singlet state showed a high tendency for puckering with dihedral angle of 66° (Fig. 1) [22].

Stability (ΔEs -t) of propargylenic plumbylene H-C=C-Pb-H was investigated at theoretical levels. Plotting MP2 relative energies of H-C=C-Pb-H as a function of the plumbylene bond angle, (H- $P\hat{b}$ -C) gave a cross points between the singlet and triplet states at 153°. No significant contribution was found for lead valence d-orbital [23]. Considering the importance of NHPbs, in this work, steric effect on the nucleophilicity index (*N*) of two series of them, I_R and II_R, are probed at DFT level.

^{*}Corresponding author. E-mail: kassaeem@modares.ac.ir

COMPUTATIONAL METHODS

Gaussian 98 program package was used for optimization of our compounds, at 6-311++G** level of theory [24-25]. The latter is a B3LYP method which unites Becke's B3 with the LYP correlation [26,27]. The keyword "Extrabasis" is used in the Gaussian 98 (Using LANL2DZ, McGrath-Curtiss basis set for plumbylene) [28,29].

Frequency measurements presented thermodynamic data, including zero-point energy, thermal correction, Gibbs free energy, enthalpy, and entropy (298.15 K and 1.0 atm) [30]. The nucleophilicity index (N) was measured as N = $E_{\text{HOMO(Nu)}}$ - $E_{\text{HOMO(TCNE)}}$, where HOMO(Nu) denotes the highest occupied molecular orbital of nucleophiles and HOMO tetracyanoethylene (TCNE) represents the highest occupied molecular orbital of TCNE [31], TCNE is chosen as the reference with the lowest N for carbenes and their heavy analogous [32-39]. Moreover, global electrophilicity (ω) was measured as $\omega = (\mu 2/2\eta)$ [40]. In this equation, μ denoted the chemical potential ($\mu = [E_{\text{HOMO}} + E_{\text{LUMO}}]/2$) and η represented chemical hardness ($\eta = E_{\text{HOMO}} - E_{\text{LUMO}}$) [41].

RESULTS AND DISCUSSION

Novel 1,4-(R)tetrazol-5-plumbylenes (I_R) are compared and contrasted to their corresponding 1,3-(R)tetrazol-5plumbylenes (II_R), at B3LYP/6-311++G**, where R is H, Me, Et, *i-Pro*, and *t-Bu* (Fig. 1). Changes of N (for I_R and II_R) are studied as functions of: singlet-triplet energy gaps ($\Delta E_{S-T} = E_T - E_S$), proton affinity (PA), nucleophilicity (N), electrophilicity (ω), and band gap ($\Delta E_{HOMO-LUMO}$) (Fig. 2).

Changes of Nucleophilicity (N) as a Function of R

A comparison between NHPbs and NHCs indicates that each NHPb is more nucleophilic than its corresponding NHCs (Table 1) [42]. Each II_R is more nucleophilic than its related I_R isomer (Table 1). For instance, II_{t-Bu} (N = 4.38 eV) shows more nucleophilicity than I_{t-Bu} (N = 3.90 eV) (Table 1).

Because of the steric hindrance, asymmetric II_R plumbylenes are kinetically more accessible than their symmetric I_R analogues. Plumbylene angle for every II_R is larger than its corresponding I_R . For instance, plumbylene angle for II_{i-Pro} is almost 2.89 degrees wider than I_{i-Pro} (Table

2). The band gap of each II_R appears to be narrower than its corresponding I_R . For instance, $\Delta E_{HOMO-LUMO}$ of II_H is (3.64 kcal/mol) narrower than that of I_H (Table 1). The band gap of every NHPb is narrower than its corresponding NHC (Table 1).

Changes of *N* as a function of R is: $I_H < I_{Me} < I_{Et} < I_{i-Pro} < I_{i-Bu} < II_H < II_{Me} < II_{Et} < II_{i-Pro} < II_{t-Bu}$. Hence, *N* increases as the size of R increases (Fig. 3). Hence, each II_R has a higher *N* than its corresponding I_R (Table 1). The smaller is the Hammett substituent constant σ , the larger is *N*. For instance, II_{t-Bu} and I_H with σ_p values of -0.20 and 0.00 (Table S1) display *N* values of 4.38 and 3.37, respectively. N is relative to the energy of its HOMO (*E*_{HOMO}) in each species (Table 1) [43].

Trend of the calculated global electrophilicity (ω /eV) [40,41] is exactly opposite of that for *N* (Table 1). Each II_R is less electrophilic than its corresponding I_R isomer. For instance, II_{*t*-Bu} (ω = -1.38 eV) shows less electrophilicity than its corresponding I_{*t*-Bu} isomer (ω = -1.78 eV) (Table 2).

Dihedral Angles ($P\ddot{b}$ -N₁-N₂-N₃, D) or Degrees of Puckering for I_R and II_R Plumbylenes

While puckering is known as a source of stability for many cyclic compounds, none of the rather aromatic species (I_R and II_R), except II_{t-Bu} , showed any degree of puckering (Table 2).

Nucleophilicity (N) vs. Plumbylene Bond Angle (N- $p\hat{b}$ -N, Deg)

The N- $P\ddot{b}$ -N is increased from I_R to II_R plumbylene (Table 2). Likewise, N as well as Pb-N₁ bond lengths increase from I_R to their corresponding II_R plumbylenes (Fig. 1, Table 2).

With a smaller divalent angle, more p character is imposed on the covalent sp² bonding orbitals. The greater s character of nonbonding σ orbital in plumbylene compensates for the change in bonding orbitals. Moreover, it reduces the σ orbital energy state and increases the σ -p_{π} gap, producing acceptable singlet and triplet (relatively unstable) states [44]. Therefore, the greater s character of σ orbital shortens the orbital and reduces nucleophilicity [45,46].

Fig. 1. Reported divalents: I_x , II_x [21], III_x [22], I'_R , II'_R [33] along with the ones scrutinized in this work including 1,4-(R)tetrazol-5-plumbylenes (I_R), and 1,3-(R)tetrazol-5-plumbylenes (I_R).

Fig. 2. A flow chart for scrutiny of normal vs. abnormal tetrazole-5-ylidenes (I_R and II_R, respectively), for R = H, Me, Et, *i-Pro*, and *t-Bu*.

Table 1. The Highest Occupied Molecular Orbital Energies (E_{HOMO}/eV) and the Lowest Unoccupied Molecular Orbital Energies (E_{LUMO}/eV), along with HOMO-LUMO Energy Differences ($\Delta E_{HOMO-LUMO}$, kcal mol⁻¹), Singlet-triplet Energy Gaps (ΔE_{S-T} , kcal mol⁻¹) and Nucleophilicity (N, eV) for Singlet States of Scrutinized NHPbs and NHCs (Table 1 Top and Bottom Portions, Respectively) at B3LYP/6-311++G**

NHPbs	$E_{\rm HOMO}$	$E_{\rm LUMO}$	$\Delta E_{ m HOMO-LUMO}$	$\Delta E_{\text{S-T}}$	Ν
$I_{\rm H}$	-6.10	-2.00	94.65	44.18	3.37
I _{Me}	-5.69	-1.89	87.65	37.53	3.78
\mathbf{I}_{Et}	-5.62	-1.83	87.34	37.16	3.85
I _{i-Pro}	-5.60	-1.82	87.28	38.38	3.87
I _{t-Bu}	-5.57	-1.78	87.42	45.95	3.90
II_{H}	-5.56	-1.61	91.01	40.02	3.91
II _{Me}	-5.27	-1.47	87.65	37.82	4.20
$\mathrm{II}_{\mathrm{Et}}$	-5.21	-1.44	86.92	37.63	4.26
II _{i-Pro}	-5.14	-1.39	86.68	37.44	4.32
\prod_{t-Bu}	-5.08	-1.34	86.28	37.41	4.38
NHCs	$E_{\rm HOMO}$	$E_{\rm LUMO}$	$\varDelta E_{ m HOMO-LUMO}$	$\Delta E_{\text{S-T}}$	Ν
$I'_{\rm H}$	-7.37	-1.17	143.06	87.53	2.10
I′ _{Me}	-6.92	-0.93	138.1	87.28	2.55
I' _{Et}	-6.84	-0.78	139.66	87.72	2.63
I' _{i-Pro}	-6.75	-0.65	140.69	86.88	2.72
I'_{t-Bu}	-6.56	-0.61	137.22	86.17	2.91
${ m II'_{H}}$	-6.54	-1.99	104.97	52.44	2.93
II' _{Me}	-6.10	-1.54	105.07	54.77	3.37
${\rm II'_{Et}}$	-6.00	-1.40	106.05	55.53	3.47
II′ _{i-Pro}	-5.93	-1.28	107.18	55.84	3.54
II' _{t-Bu}	-5.80	-1.08	108.84	54.29	3.67

Fig. 3. Nucleophilicity (N) as a function of substituent size for two series of plumbylene (I_R and II_R).

Table 2. Geometrical Parameters Including Plumbylene Bond Angles $(N - p\hat{b} - N, Deg)$, and Dihedral Angles $(P\hat{b} - N_1 - N_2 - N_3, D)$ in Degrees, Carbenic Bond Lengths (Å), Proton Affinities (PA, kcal mol⁻¹), and Global Electrophilicity (ω) at B3LYP/6-311++G** Level of Theory

Plumbylenes	$N-P\hat{\vec{b}}-N$	D	N ₄ -Pb	Pb-N ₁	ω	PA
I _H	70.39	0.01	2.131	2.131	-1.98	139.31
I _{Me}	71.58	0.01	2.137	2.137	-1.89	183.23
I _{Et}	71.40	0.00	2.145	2.145	-1.83	187.00
I _{i-Pro}	71.15	0.00	2.144	2.144	-1.82	190.13
I _{t-Bu}	71.95	0.01	2.145	2.145	-1.78	191.39
II_{H}	73.86	0.00	2.103	2.206	-1.63	178.84
II _{Me}	73.99	0.00	2.093	2.211	-1.49	197.66
$\mathrm{II}_{\mathrm{Et}}$	73.93	0.00	2.092	2.220	-1.47	200.80
II _{i-Pro}	74.04	0.09	2.093	2.217	-1.42	205.82
II _{t-Bu}	73.93	0.27	2.090	2.215	-1.38	210.84

Nucleophilicity and Stability of Plumbylenes vs. their Corresponding Carbenes

Stability of carbenes and their heavy analogues are presumed to be related to their corresponding singlet-triplet energy gaps ($\Delta E_{S-T} = E_T - E_S$). A higher stability for a singlet state is indicated by its positive ΔEs -t, while a negative value for the latter corresponds to a higher stability for the triplet state [47]. Stability for ten scrutinized plumbylenes are calculated at B3LYP/6-311++G** level of theory (Table 1). Evidently, our singlet state NHPbs appear to be more stable than their corresponding triplet states.

Stability of plumbylenes I_R and II_R and their corresponding carbenes I'_R and II'_R (Fig. 1) are presumed to be related to their $\Delta E_{\text{S-T}}$. Interestingly, every plumbylene appears to be less stable, with a lower band gap (ΔE_{HOMO} -LUMO) and a higher N than its corresponding carbene, at B3LYP/6-311++G** level of theory (Table 1). On the other hand, each II_R appears to be less stable, but more nucleophilic than its corresponding I_R. For instance, plumbylene II_{t-Bu} (with $\Delta E_{S-T} = 37.41$ kcal mol⁻¹ and N =4.38 eV) is less stable but more nucleophilic than plumbylene I_{t-Bu} (with $\Delta E_{S-T} = 45.95$ kcal mol⁻¹ and N = 3.90eV). Likewise, each II'_R appears to be less stable, but more nucleophilic than I'_R. For instance, carbene II'_{t-Bu} (with ΔE_{S} - $_{\rm T}$ = 54.29 kcal mol⁻¹ and N = 3.67 eV) is less stable but more nucleophilic than carbene I'_{t-Bu} (with $\Delta E_{S-T} = 86.17$ kcal mol^{-1} and N = 2.91 eV).

Nucleophilicity (N) vs. Proton Affinity (PA)

The reaction induces the NHC catalyst formation from its salt through deprotonation; as a result, carbene basicity (salt acidity) greatly affects catalytic function. Overall, various experimental [48-53] and calculated [54-58] data have been reported regarding proton affinity and carbenes basicity.

Our calculated PA, kcal mol⁻¹ in I_R and II_R series takes on a trend with an exactly opposite direction from $\Delta E_{HOMO-LUMO}$ (Table 1). The band gap of every II_R appears to be narrower than its corresponding I_R. The proton affinity of every II_R is more than its corresponding I_R and for II_R series the trend of proton affinity is similar to the nucleophilicity. This result indicates that every II_R plumbylene with narrower $\Delta E_{HOMO-LUMO}$ and higher proton affinity is more reactive or nucleophilic than its corresponding I_R. For instance, in II_R series, II_{*t*-Bu} with ($\Delta E_{HOMO-LUMO} = 86.28$ Kcal mol⁻¹) and (PA = 210.84 kcal mol⁻¹) is more reactive than others, and in I_R series, I_{*t*-Bu} with ($\Delta E_{\text{HOMO-LUMO}} = 87.42$ kcal mol⁻¹) and (PA = 191.39 kcal mol⁻¹) is more reactive than others (Tables 1, 2). $\Delta E_{\text{HOMO-LUMO}}$ for ten scrutinized plumbylene, appears to be a function of PA with a correlation factor of R² = 0.88 (Table 3, Fig. 4).

Nuclear Independent Chemical Shift (NICS)

For the assessment of aromaticity in molecules, magnetic criteria can be applied. Owing to its effectiveness and simplicity, nucleus-independent chemical shifts (NICS) parameter is now among aromaticity criteria [59,60]. NICS is a shielding constant of a virtual atom, situated near a molecule for probing the generated ring current. In the current study, the NICS-1 parameter was applied. This parameter is measured at 1 Å above the molecular ring center and is responsible for p-electron involvement; it is also free of s-electrons. In general, negative and positive NICS-1 values represent aromaticity and antiaromaticity, respectively.

For singlet plumbylenes I_R and II_R , NICS values are calculated at 0.5, 1, 1.5, 2, 2.5 and 3 Å above the ring center at B3LYP/6-311++G** level of theory (Table 4). Each II_R (except II_H) shows more aromaticity and nucleophilicity than its corresponding I_R isomer (Tables 1, 4).

Atomic Charge Natural Bond Orbital (NBO)

Natural bond orbital (NBO) analyses of our NHPbs were carried out at B3LYP/6-311++G** (Table 5). Divalent Pb atoms display charges of +1.00 to +1.09, which appear in contrast to the reported atomic charges for their corresponding carbenes (-0.19 to -0.37) [30]. This may be attributed to the lower Pauling electronegativity of Pb (2.33) compared to that of C (2.55). Charges on Pb atoms of normal I_R are slightly higher than their corresponding abnormal I_R isomers.

CONCLUSIONS

A comparison is made between nucleophilicity (*N*), electrophilicity (ω), proton affinity (PA), substituent size (R), plumbylene bond angle (N- $p\hat{b}$ -N), nucleus independent chemical shift (NICS, as a measure of

Table 3. Direct or Inverse Proportionality Correlations (\mathbb{R}^2) between the Main Thermodynamic and Structural Parameters of our Scrutinized Plumbylenes I_R and II_R, Including Nucleophilicity (*N*), Substituent Size (R), Proton Affinity (PA), Band Gap ($\Delta E_{\text{HOMO-LUMO}}$), Electrophilicity (ω), and Bond Angle (N- $P\vec{b}$ -N) at B3LYP/6-311++G** I Level of Theory (See Supplementary Information Fig. S1)

Parameter ₁	vs. Parameter ₂	R^2	Proportionality
Ν	R	0.90	Direct
N	ω	0.90	Inverse
Ν	РА	0.88	Direct
N	$N-P\hat{\vec{b}}-N$	0.77	Direct
Ν	$\varDelta E_{ m HOMO-LUMO}$	0.60	Inverse
PA	$\varDelta E_{ m HOMO-LUMO}$	0.88	Inverse
PA	R	0.66	Direct
PA	ω	0.62	Direct
РА	$N-p\hat{\vec{b}}-N$	0.5	Direct
ω	R	0.96	Inverse
ω	$N-P\hat{\vec{b}}-N$	0.90	Direct
$N-P\hat{\ddot{b}}-N$	R	0.83	Direct

Fig. 4. Bond gap ($\Delta E_{\text{HOMO-LUMO}}$) of normal and abnormal tetrazol-5-plumbylene as a function of their proton affinity (PA, kcal mol⁻¹) with a correlation factor of R² = 0.88.

2.5 and 3 Å above the Ring Center for Singlet Plumbylenes I_R and II_R, at B3LYP/6-311++G** Level of Theory

Table 4. The Nucleus Independent Chemical Shift (NICS) Calculated at 0.5, 1, 1.5, 2,

NHPbs	$I_{\rm H}$	I _{Me}	I_{Et}	I _{i-Pro}	I _{t-Bu}
NICS (0)	-11.99	-8.79	-8.06	-8.26	-4.21
NICS (0.5)	-12.21	-9.53	-9.20	-8.53	-5.68
NICS (1)	-10.18	-8.48	-8.44	-6.68	-6.17
NICS (1.5)	-6.83	-5.89	-5.77	-4.37	-4.77
NICS (2)	-4.26	-3.75	-3.56	-2.67	-3.07
NICS (2.5)	-2.66	-2.34	-2.19	-1.66	-1.81
NICS (3)	-1.70	-1.49	-1.40	-1.04	-1.05
NHPbs	II_H	II _{Me}	II _{Et}	II _{<i>i</i>-Pro}	II _{t-Bu}
NICS (0)	-11.14	-9.66	-9.57	-9.11	-8.10
NICS (0.5)	-11.53	-10.21	-10.52	-9.97	-9.22
NICS (1)	-10.05	-9.15	-9.76	-9.22	-8.95
NICS (1.5)	-7.16	-6.620	-7.22	-6.86	-7.15
NICS (2)	-4.71	-4.49	-4.87	-4.75	-5.25
NICS (2.5)	-3.03	-2.98	-3.18	-3.21	-3.60
NICS (3)	-1.97	-1.98	-2.07	-2.15	-2.38

aromaticity), band gap ($\Delta E_{\text{HOMO-LUMO}}$), and singlet-triplet energy gap ($\Delta E_{\text{S-T}}$, assumed as a measure of stability) for a series of 1,4-(R), "normal", tetrazol-5-plumbylenes (I_R), *vs.* their corresponding 1,3-(R), "mesoionic, or abnormal", isomers (II_R), at the B3LYP/6-311++G** level of theory; where R = H, Me, Et, *i-Pro*, and *t-Bu*. For every scrutinzed plumpylene, *N* appears directly proportional to its R, PA, and N- $P\hat{b}$ -N, while being indirectly proportional with ω , and $\Delta E_{\text{HOMO-LUMO}}$ with correlation factors (R²) = 0.90, 0.88, 0.77, 0.90 and 0.60, respectively. Changes of R directly affect on *N*, N- $P\hat{b}$ -N, and PA with R² = 0.90, 0.83 and 0.66, respectively. The results of our calculations indicate that each II_R is more nucleophilic than its corresponding I_R isomer for exhibiting a larger *N*. In addition, a comparison between NHPbs and NHCs indicates that the former is more nucleophilic than its corresponding NHCs. The trend of the calculated global electrophilicity (ω) is exactly opposite of that for *N*. The least stable in the II_R is II_{t-Bu} with more nucleophilicity. Except for II_{t-Bu}, none of the rather aromatic species scrutinized (I_R and II_R), show any degrees of puckering. The N- $P\hat{b}$ -N is increased from I_R to II_R plumbylene. Likewise, nucleophilicity is increased from I_R is more than its corresponding I_R. This result indicates that every II_R plumbylene with narrower $\Delta E_{\text{HOMO-LUMO}}$ and higher proton affinity is more active or nucleophilic than its corresponding

Plumbylenes	P [¨] b ₅	\mathbf{N}_1	N_2	N ₃	N_4
I _H	1.09	-0.84	-0.08	-0.08	-0.84
I _{Me}	1.04	-0.64	-0.09	-0.09	-0.64
I_{Et}	1.02	-0.63	-0.89	-0.89	-0.63
I _{i-Pro}	1.03	-0.63	-0.09	-0.09	-0.63
I _{t-Bu}	1.05	-0.64	-0.10	-0.10	-0.64
II _H	1.02	-0.76	-0.12	-0.12	-0.78
II _{Me}	1.01	-0.57	-0.13	-0.01	-0.80
II_{Et}	1.00	-0.56	-0.12	-0.02	-0.80
II _{<i>i</i>-Pro}	1.00	-0.56	-0.13	-0.02	-0.80
II _{t-Bu}	1.00	-0.56	-0.14	-0.02	-0.80

Table 5. NBO Atomic Charges on $P\ddot{b}$ and N₁-N₄, for Two Series of Plumbylene (I_R and II_R), at B3LYP/6-311++G** Level of Theory

I_R. In II_R series, II_{*t-Bu*} ($\Delta E_{\text{HOMO-LUMO}} = 86.28$ kcal mol⁻¹ and PA = 210.84 kcal mol⁻¹) is more reactive than the other II_R series. In I_R series, I_{*t-Bu*} with $\Delta E_{\text{HOMO-LUMO}} = 87.42$ kcal mol⁻¹ and PA = 191.39 kcal mol⁻¹ is more reactive than its I_R analogs $\Delta E_{\text{HOMO-LUMO}}$ for ten scrutinized plumbylene, appears as a function of PA, kcal mol⁻¹ with a correlation factor of R² = 0.88

ACKNOWLEDGMENTS

Support from Tarbiat Modares University (TMU) is gratefully acknowledged.

REFERENCES

- Heitmann, D.; Pape, T.; Hepp, A.; Mück-Lichtenfeld, C.; Grimme, S.; Hahn, F. E., Palladium and platinum complexes of a benzannulated n-heterocyclic plumbylene with an unusual bonding mode. *J. Am. Chem. Soc.* 2011, *133*, 11118-11120, DOI: 10.1021/ ja204955f.
- [2] Arp, H.; Baumgartner, J.; Marschner, C.; Zark, P.; Müller, T., Coordination chemistry of cyclic

disilylated stannylenes and plumbylenes to group 4 metallocenes. J. Am. Chem. Soc. 2012, 134, 10864-10875, DOI: 10.1021/ja301547x.

- [3] Charmant, J. P. H.; Haddow, M. F.; Hahn, F. E.; Heitmann, D.; Frohlich, R.; Mansell, S. M.; Russell, C. A.; Wass, D. F., Syntheses and molecular structures of some saturated N-heterocyclic plumbylenes. *Dalton Trans.* 2008, 43, 6055-6059, DOI: 10.1039/B808717B.
- [4] Gehrhus, B.; Hitchcock, P. B.; Lappert, M. F., Crystalline (NN)C-M(NN) complexes: synthesis, structure, bonding and lability [M = Si, Ge, Sn or Pb; (NN) = 1,2-(ButCH₂N)₂C₆H₄]. J. Chem. Soc., Dalton Trans. 2000, 18, 3094-3099, DOI: 10.1039/ B005216G.
- [5] Barrau, J.; Rima, G., Stable germanium analogs of carbenes, imines, ketones, thiones, selones and tellones. *Coord. Chem. Rev.* 1998, *178-180*, 593-622, DOI: 10.1016/S0010-8545(98)00076-9.
- [6] Tokitoh, N.; Okazaki, R., Recent topics in the chemistry of heavier congeners of carbenes. *Coord*.

Chem. Rev. **2000**, *210*, 251-277, DOI: 10.1016/ S0010-8545(00)00313-1.

- [7] Kira, M., Isolable silylene, disilenes, trisilaallene, and related compounds, J. Organomet. Chem. 2004, 689, 4475-4486, DOI: 10.1016/j.jorganchem.2004.05.054.
- [8] Weidenbruch, M., Some silicon, germanium, tin, and lead analogues of carbenes, alkenes, and dienes. Eur. *J. Inorg. Chem.* 1999, 373-381, DOI: 10.1002/ (SICI)1099-0682.
- [9] Veith, M., Unsaturated molecules containing main group metals. *Angew. Chem. Int. Ed. Engl.* 1987, 26, 1-14, DOI: 10.1002/anie.198700013.
- [10] Kühl, O., N-heterocyclic germylenes and related compounds. *Coord. Chem. Rev.* 2004, 248, 411-427, DOI: 10.1016/j.ccr.2003.12.004.
- [11] Hill, N. J.; West, R., Recent developments in the chemistry of stable silylenes. J. Organomet. Chem. 2004, 689, 4165-4183, DOI: 10.1016/j.jorganchem.2004.09.012.
- [12] Gehrhus, B.; Lappert, M. F., Chemistry of thermally stable bis(amino)silylenes. *J. Organomet. Chem.* **2001**, *617-618*, 209-223, DOI: 10.1016/S0022-328X(00)00729-4.
- [13] Davidson, P. J.; Lappert, M. F., Stabilisation of metals in a low co-ordinative environment using the Bis(trimethylsi1yl)methyl ligand; coloured SnII and PbII alkyls, M[CH(SiMe₃)₂]₂. J. Chem. Soc. Chem. Commun. **1973**, 317, DOI: 10.1039/C3973000317A.
- [14] Goldberg, D. E.; Harris, D. H.; Lappert, M. F.; Thomas, K. M., A new synthesis of divalent group 4B alkyls M[CH(SiMe₃)₂]₂ (M = Ge or Sn), and the crystal and molecular structure of the tin compound. *J. Chem. Soc. Chem. Commun.* **1976**, 261-262, DOI: 10.1039/C39760000261.
- [15] Izod, K.; Wills, C.; Clegg, W.; Harrington, R. W., Seven-membered cyclic dialkylstannylene and -plumbylene compounds stabilized by agostic-type B-H · · · E interactions [E = Sn, Pb]. *Organometallics*. 2009, 28, 2211-2217, DOI: 10.1021/om801189h.
- [16] Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand,
 G., Stable carbenes. *Chem. Rev.* 2000, 100, 39-91,
 DOI: 10.1021/cr940472u.
- [17] Harrison, P. G., Comprehensive Organometallic Chemistry. Pergamon: Oxford, 1984, p. 629-674.

- [18] Harrison, P. G., Comprehensive Organometallic Chemistry II. Elsevier: Amsterdam: 1995; p. 305-319
- [19] Kaupp, M.; Schleyer, P. V. R., *Ab initio* study of structures and stabilities of substituted lead compounds. Why is inorganic lead chemistry dominated by PbII but organolead chemistry by Pb IV?. *J. Am. Chem. Soc.* **1993**, *115*, 1061-1073, DOI: 10.1021/ja00056a034.
- [20] Braunschweig, H.; Damme, A.; Dewhurst, R. D.; Hupp, F.; Jimenez-Halla, J. O. C.; Radacki, K., σ-Donor-σ-acceptor plumbylene ligands: synergic σdonation between ambiphilic Pt0 and PbII fragments. *Chem. Commun.* **2012**, *48*, 10410-10412, DOI: 10.1039/C2CC35777A.
- [21] Kassaee, M. Z.; Arshadi, S.; Acedy, M.; Vessally, E., Singlet-triplet energy separations in divalent fivemembered cyclic conjugated C₅H₃X, C₄H₃SiX, C₄H₃GeX, C₄H₃SnX, and C₄H₃PbX (X = H, F, Cl, and Br). *J. Organometal. Chem.* **2005**, 690, 3427-3439, DOI: 10.1016/j.jorganchem.2005.04.030.
- [22] Akbari, A.; Golzadeh, B.; Arshadi, S.; Kassaee, M. Z., A quest for stable 2,5-bis(halobora)cyclopentenylidene and its Si, Ge, Sn and Pb analogs at theoretical levels. *RSC Adv.* 2015, *5*, 43319-43327, DOI: 10.1039/C5RA04911C.
- [23] Kassaee, M. Z.; Musavi, S. M.; Ghambarian, M., Divalent propargylenic C2H2M group 14 elements: Structures and singlet-triplet energy splitting (M = C, Si, Ge, Sn and Pb). *J. Mol. Struct.: THEOCHEM.* 2005, 731, 225-231, DOI: 10.1016/ j.theochem.2005.06.033.
- [24] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennuci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C.

Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chem, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

- [25] Frisch, M. J.; Pople, J. A.; Binkley, J. S., Self consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265-3269, DOI: 10.1063/1.447079.
- [26] Becke, A. D., Density-functional thermochemistry.
 III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652, DOI: 10.1063/1.464913.
- [27] Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B: Condens. Mater.* **1988**, *37*, 785-789, DOI: 10.1103/PhysRevB.37.785.
- [28] Schlegel, H. B.; Frisch, M. J., Transformation between cartesian and pure spherical harmonic Gaussians. *Int. J. Quantum Chem.* **1995**, *54*, 83-87, DOI: 10.1002/qua.560540202.
- [29] Curtiss, L. A.; McGrath, M. P.; Blaudeau, J. P.; Davis, N. E.; Binning Jr. R. C.; Radom, L., Extension of Gaussian2 theory to molecules containing thirdrow atoms Ga-Kr. J. Chem. Phys., 1995, 103, 6104-6113, DOI: 10.1063/1.470438.
- [30] Foresman, J. B. in: E. Frisch (Ed.), Exploring Chemistry with Electronic Structure Methods: a Guide to Using Gaussian. Gaussian Inc., Pittsburg, PA, 1996.
- [31] Domingo, L. R.; Chamorro, E.; Pérez, P. J., Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. *J. Org. Chem.* 2008, 73, 4615-4624, DOI: 10.1021/ jo800572a.
- [32] Kassaee, M. Z.; Najafi, Z.; Shakib, F. A.; Momeni, M. R., Stable silylenes with acyclic, cyclic, and unsaturated cyclic structures: Effects of heteroatoms and cyclopropyl substituents at DFT. *J. Organometal. Chem.*, **2011**, *696*, 2059-2064, DOI: 10.1016/ j.jorganchem.2010.10.065.
- [33] Momeni, M. R.; Shakib, F. A., Beyond conventional N-heterocyclic silylenes: A density functional

approach toward structural features and catalytic applications. *Comput. Theoretical Chem.*, **2012**, *985*, 62-66, DOI: 10.1016/j.comptc.2012.01.040.

- [34] Kassaee, M. Z.; Zandi, H.; Haerizade, B. N.; Ghambarian, M., Effects of a-mono heteroatoms (N vs. P), and β-conjugation on cyclic silylenes. *Comput. Theoretical Chem.*, **2012**, *1001*, 39-43, DOI: org/10.1016/j.comptc.2012.10.005.
- [35] Amani, J.; Musavi, S. M.; Riazikia, M., Isomeric pyridylcarbenes and their Si and Ge heavier analogues at DFT: stabilization through π-p or n-p interaction. *Tetrahedron*, **2012**, *68*, 2061-2067, DOI: 10.1016/ j.tet.2011.12.081.
- [36] Kassaee, M. Z.; Zandi, H.; Momeni, M. R.; Shakib, F. A.; Ghambarian, M., Toward stable N-heterocyclic silylenes at theoretical levels. *J. Mol. Struct.*: *THEOCHEM*, **2009**, *913*, 16-21, DOI: 10.1016/j.theochem.2009.07.001.
- [37] Kassaee, M. Z.; Zandi, H., *P*-Heterocyclic silylenes: a survey of stability with density functional theory. *J. Phys. Org. Chem*, **2012**, *25*, 50-57, DOI: 10.1002/ poc.1867.
- [38] Amani, J.; Musavi, S. M.; Riazikia, M., Diazinylcarbenes and their heavier analogues at DFT: An intramolecular stabilization of singlet Si and Ge divalent centers. *Organometallics*, **2012**, *31*, 4157-4165, DOI: org/10.1021/om201264d.
- [39] Kassaee, M. Z.; Momeni, M. R.; Shakib, F. A.; Ghambarian, M., Pyridine derived N-heterocyclic germylenes: A density functional perspective. *J. Organometallic Chem.*, **2010**, *695*, 760-765, DOI: 10.1016/j.jorganchem.2009.12.013.
- [40] Parr, R. G.; Szentpaly, L.; Liu, S., Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924, DOI: 10.1021/ja983494x.
- [41] Parr, R. G.; Pearson, R. G., Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512-7516, DOI: 10.1021/ ja00364a005.
- [42] Rezaee, N.; Ahmadi, A.; Kassaee, M. Z., Nucleophilicity of normal and abnormal Nheterocyclic carbenes at DFT: steric effects on tetrazole-5-ylidenes. *RSC Adv.* 2016, 6, 13224-13233, DOI: 10.1039/C5RA21247B.

- [43] Amyes, T. L.; Diver, S. T.; Richard, J. P.; Rivas, F. M.; Toth, K., Formation and stability of Nheterocyclic carbenes in Water: the carbon acid pKa of imidazolium cations in aqueous solution. *J. Am. Chem. Soc.* 2004, *126*, 4366-4374, DOI: 10.1021/ ja039890j.
- [44] Kassaee, M. Z.; Shakib, F. A.; Momeni, M. R.; Ghambarian, M.; Musavi, S. M., A DFT study on pyridine-derived N-heterocyclic carbenes. *Tetrahedron.* 2009, 65, 10093-10098, DOI: 10.1016/ j.tet.2009.09.043.
- [45] Sulzbach, H. M.; Bolton, E.; Lenoir, D.; Schleyer, P. V. R.; Schaefer, H. F., Tetra-tert-butylethylene: an elusive molecule with a highly twisted double bond. can it be made by carbene dimerization?. J. Am. Chem. Soc. 1996, 118, 9908-9914, DOI: 10.1021/ja960549r.
- [46] Liu, F.; Paton, R. S.; Kim, S.; Liang, Y.; Houk, K. N., Diels-Alder reactivities of strained and unstrained cycloalkenes with normal and inverse-electrondemand dienes: activation barriers and distortion/ interaction analysis. J. Am. Chem. Soc. 2013, 135, 15642-15649, DOI: 10.1021/ja408437u.
- [47] Nemirowski, A.; Schreiner, P. R., Electronic Stabilization of Ground State Triplet Carbenes. J. Org. Chem., 2007, 72, 9533-9540, DOI: 10.1021/ jo701615x.
- [48] Alder, R. W.; Allen, P. R.; Williams, S. J., Stable carbenes as strong bases, *J. Chem. Soc. Chem. Commun.* 1995, *12*, 1267-1268, DOI: 10.1039/ C39950001267.
- [49] Kim, Y. -J.; Streitwieser, A., Basicity of a stable carbene, 1,3-Di-tert-butylimidazol-2-ylidene, in THF1. J. Am. Chem. Soc. 2002, 124, 5757-5761, DOI: 10.1021/ja025628j.
- [50] Chen, H.; Justes, D. R.; Cooks, R. G., Proton affinities of N-heterocyclic carbene super bases. *Org. Lett.* 2005, *7*, 3949-3952, DOI: 10.1021/ol0514247.
- [51] Chu, Y.; Deng, H.; Cheng, J. -P., An acidity scale of 1,3-Dialkylimidazolium Salts in Dimethyl Sulfoxide Solution. J. Org. Chem. 2007, 72, 7790-7793, DOI: 10.1021/jo070973i.

- [52] Schroeder, M. A.; Makino, R. C., The relation between structure and reactivity in five-membered heteroaromatic compounds- II CND0/2 calculations on azolium cations and on the zwitterions resulting from their deprotonation. *Tetrahedron.* **1973**, *29*, 3469-3489, DOI: 10.1016/S0040-4020(01)93507-0.
- [53] Burke, A.; Balch, A. L.; Enemark, J. H., Palladium and platinum complexes resulting from the addition of hydrazine to coordinated isocyanide. *J. Am. Chem. Soc.* **1970**, *92*, 2555, DOI: 10.1021/ja00711a063.
- [54] Graham, D. C.; Cavell, K. J.; Yates, B. F., Dimerization mechanisms of heterocyclic carbenes. J. Phys. Org. Chem. 2005, 18, 298-309, DOI: 10.1002/ poc.846.
- [55] Magill, A. M.; Cavell, K. J.; Yates, B. F., Basicity of nucleophilic carbenes in aqueous and nonaqueous solvents-theoretical predictions. J. Am. Chem. Soc. 2004, 126, 8717-8724, DOI: 10.1021/ja038973x.
- [56] Alder, R. W.; Blake, M. E.; Oliva, J. M., Diaminocarbenes; calculation of barriers to rotation about carbene-N bonds, barriers to dimerization, proton affinities, and ¹³C NMR shifts. *J. Phys. Chem. A.* **1999**, *103*, 11200-11211, DOI: 10.1021/jp9934228.
- [57] Kassaee, M. Z.; Shakib, F. A.; Momeni, M. R.; Ghambarian, M.; Musavi, S. M., Carbenes with reduced heteroatom stabilization: a computational approach. J. Org. Chem. 2010, 75, 2539-2545, DOI: 10.1021/jo100022t.
- [58] Hollóczki, O.; Gerhard, D.; Massone, K.; Szarvas, L.; Németh, B.; Veszprémi, T.; Nyulászi, L., Carbenes in ionic liquids. *New J. Chem.* **2010**, *34*, 3004-3009, DOI: 10.1039/C0NJ00380H.
- [59] Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. V. R., Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. *Chem. Rev.* 2005, *105*, 3842-3888, DOI: 10.1021/cr030088+.
- [60] Schleyer, P. V. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. V. E., Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. *J. Am. Chem. Soc.* **1996**, *118*, 6317-6318, DOI: 10.1021/ja960582d.