Estimation of Solubility of BTEX, Light Hydrocarbons and Sour Gases in Triethylene Glycol Using the SAFT Equation of State

Document Type: Regular Article

Authors

Chemical, Petroleum, and Gas Engineering Department, Shiraz University of Technology, Shiraz 7155713876, Iran

Abstract

An accurate prediction of the absorption and desorption of Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) is important for the estimation of BTEX emissions from glycol units in natural gas processing plants. This work presents an approach to accurately model the solubilities of BTEX in triethylene glycol (TEG). The absorption of gases studied in this work into TEG is physical in nature, and therefore is treated as physisorption in modeling. The Huang-Radosz version of Statistical Associating Fluid Theory (SAFT-HR) Equation of State (EoS) was utilized to estimate the solubilities of BTEX in TEG. A new set of SAFT parameters for TEG, as well as a new set of binary interaction parameters between TEG and other components were obtained by fitting experimental vapor pressure and liquid density of TEG and available experimental binary VLE data, respectively. Using these parameters, solubility of multicomponent gases in TEG are accurately predicted. To have an estimate of the relative accuracy of SAFT-HR EoS, the results from Perturbed–Chain SAFT (PC–SAFT) and Peng–Robinson (PR) EoS are also reported. The overall average of root–mean–square deviation (RMSD) for binary and ternary systems studied in this work, using SAFT-HR, PC–SAFT, and PR EoS obtained equal to 0.12, 0.20, and 1.56, respectively.

Graphical Abstract

Estimation of Solubility of BTEX, Light Hydrocarbons and Sour Gases in Triethylene Glycol Using the SAFT Equation of State

Keywords