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 The quantitative structure-property relationship (QSPR) method is used to develop the correlation between structures of refrigerants 
(198 compounds) and their critical temperature. Molecular descriptors calculated from structure alone were used to represent molecular 
structures. A subset of the calculated descriptors selected using a genetic algorithm (GA) was used in the QSPR model development. 
Multiple linear regressions (MLR) were utilized to construct the linear prediction model. The prediction result agrees well with the 
experimental value of this property. The comparison results indicate the superiority of the presented model and reveal that it can be 
effectively used to predict the critical temperatures of refrigerant compounds from the molecular structures alone. The stability and 
predictivity of the proposed model were validated using internal validation, external validation and Y-scrambling. Application of the 
developed model to a testing set of 39 organic compounds demonstrates that the new model is reliable with good predictive accuracy and 
simple formulation. The R2, RMSEtr and Q2

loo values for the training set were 0.9752, 13.8994 and 0.9742; Q2
ext and RMSEpr for test set 

were 0.9766 and 12.8654 for GA-MLR model, respectively. The prediction results are in good agreement with the experimental values. In 
addition, the applicability domain (AD) of the model was analyzed based on the Williams plot. 
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INTRODUCTION 
 
 Halogen-containing organic compounds are an 
important class of chemicals, with many industrial and 
laboratory applications. They used as solvents, plastics, 
anesthetics, foaming agents, refrigerants, and pesticides 
[1,2]. The refrigerant is a compound, generally a fluid, used 
in a heat pump and refrigerating cycle. In this cycle, it 
undergoes phase transitions from a liquid to a gas and back 
again. Usually, chlorofluorocarbons (CFCs), hydrochloro-
fluorocarbons (HCFCs), hydrofluorocarbons (HFCs), 
perfluorocarbons (PFCs) were used as refrigerants. The 
inert nature of many CFCs and HCFCs, while having the 
benefit of making them nonflammable and nontoxic, 
contributes to  their  stability  in  the  atmosphere,  and  their 
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corresponding global warming possible and ozone layer 
depletion possible. Though HFCs and PFCs are non-ozone 
reducing, many have global warming potential that is 
thousands of times more than carbon dioxide. Some of the 
refrigerants such as propane and ammonia are not inert and 
are flammable or toxic if released. New refrigerants have 
been developed that are safe to humans and to the 
environment [3].  
 The critical point, a point on a phase diagram at which 
both, the liquid and gas phases of a substance have the same 
density, and are therefore indistinguishable. The coordinates 
of this point are called the critical temperature (Tc) and 
critical pressure (Pc). The temperature above which a gas 
cannot be liquefied and a substance cannot exhibit distinct 
gas and liquid phases was called critical temperature (Tc). 
This property plays an important role in chemical 
engineering. Because of its importance,  it  would  be useful  
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to develop predictive models, which can be used to predict 
the Tc of new compounds without experimentation. The Tc 
is one of the important properties revealing the 
intermolecular interaction between molecules in the liquid 
state. The development of a quantitative structure-property 
relationship (QSPR) model for Tc using genetic algorithm-
multiple linear regression (GA-MLR) methodology has 
been successful. The QSPR approach has been widely used 
in the prediction of physical and chemical properties of 
organic compounds [4,5]. QSPR is based on the assumption 
that the properties of a compound are ultimately determined 
by its molecular structure. Accordingly, the QSPR approach 
attempts to establish simple mathematical relationships to 
describe the correlation of a given property to molecular 
structures for a set of compounds. Several studies are done 
to investigations regarding the relationship between Tc of 
other organic compounds and molecular structure 
descriptors [6-10].  
 In the works of Ferri et al. and Gasem et al., critical 
properties of diverse organic compounds were studied using 
Heuristic method and MLR method, respectively [11,12]. In 
the work of Sobati and Abooali, critical properties of 
refrigerant compounds were studied [13]. The QSPR can be 
used to predict physicochemical properties of refrigerant 
compounds by using theoretical descriptors. So once a 
reliable QSPR model is established, we can use this model 
to predict the property of a compound, whether it was 
synthesized or not. In our previous papers, we reported on 
the application of quantitative structure-property 
relationships (QSPR) techniques in developing a new, 
simplified approach to prediction of organic compounds 
properties using different models [14-22].  
 In this study, we present new QSPR model for the 
prediction of the critical temperature of a diverse set of 198 
refrigerant chemicals. Our goal here is to develop an 
accurate, simple, fast, and less expensive method for 
calculation of Tc values. A GA-MLR procedure was used 
for selection of descriptors and modeling. Also, in this work 
we applied back propagation neural network (BPNN) and 
support vector machine regression (SVMR) on this data set, 
but no significant difference between results with MLR 
method, so we preferred to report of results the MLR 
method. The predictive power of the resulting model is 
demonstrated by testing them on unseen data  that  were  not  

 
 
used during model generation. A physicochemical 
explanation of the selected descriptors is also given. 
 
METHODS AND MATERIALS 
 
 To develop a QSPR model for critical temperatures 
involves several distinct steps, includes (a) data collection, 
(b) molecular geometry optimization, (c) molecular 
descriptor generation, (d) descriptor selection, (e) model 
development and (f) model performance evaluation.  
 
Data Set Selection 
 All critical temperature data of the present investigation 
were obtained from the CRC Handbook of Physics and 
Chemistry and Handbook of Thermophysical Properties of 
Chemicals and Hydrocarbons [23,24]. Critical temperature 
range was from 227.5-695 K. The data set consists of 198 
compounds, which have been deemed industrially important 
from the chemical engineering perspective. A complete list 
of the compound names and corresponding experimental 
critical temperatures is given as a Supplementary 
Information. 

 For evaluating the predictive capability of the proposed 
model, before model generation both dataset have been split 
into a training set (∼80% of compounds), used for model 
development, and a prediction set (∼20% of compounds), 
used for external validation. The training set was used to 
adjust the parameters of the GA-MLR and the test set was 
used to evaluate its prediction ability. 
 
Molecular Modeling and Descriptor Generation 
 All numerical calculations have been performed by a 
computer with intel® Core™ i7 processor and 6Gb RAM 
characteristics. The ChemDraw Ultra version 13.0 
(ChemOffice 2012, CambridgeSoft Corporation; 
Cambridge, MA) software was used for drawing the 
molecular structures. The optimizations of molecular 
structures were done by the HyperChem 8.0 (Hypercube, 
Inc., Gainesville, 2011) using AM1 method, and descriptors 
were calculated by Molecular Modeling Pro Plus (MMP+) 
Version 6.3.3 (ChemSW, Inc.; Fairfield, CA, 2009) 
software. MMP+ software computes six classes of structural 
descriptors: constitutional; topological; geometrical; 
electrostatic;   quantum    chemical     and     thermodynamic  
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molecular descriptors [25-27]. Then 72 molecular 
descriptors were calculated for each compound by the 
MMP+ on the minimal energy conformations. In order to 
reduce redundant and non-useful information, constant or 
near constant values and descriptors found to be highly 
correlated pair-wise (one of any two descriptors with a 
correlation greater than 0.9) were excluded in a pre-
reduction step; therefore 43 molecular descriptors 
underwent subsequent variable selection. Genetic algorithm 
(GA), included in the QSARINS (version 2.2, 2015), was 
used for variables selection. MLR was performed by using a 
routine from the QSARINS [28,29].  
 
Descriptors Selection Based on GA-MLR 
 In order to perform external validation, the dataset was 
divided into representative training and prediction set by the 
Y-ranking method [30]. In this method, the data were sorted 
firstly according to their Tc values. The training and 
external prediction sets were chosen from the sorted lists 
with desired distances from each other. Finally, the training 
set (159 compounds) was used to establishing QSPR model 
and the prediction set (39 compounds) was used to evaluate 
the external predictive ability of the built model. The used 
molecular descriptors to build model will strongly influence 
the predictive ability of QSPR model. Among methods of 
variable selection, genetic algorithm (GA) has been widely 
used because of its outstanding performance in feature 
selection [31,32]. 
 Hence, in the present study, we also used GA 
implemented in QSARINS to perform variable selection. 
The quality of the model was evaluated by the fitness 
function, and ranked according to the fitness score. In the 
work, leave-one-out cross-validation (Q2

LOO) was used as 
fitness function during the GA process. When increasing the 
model size does not improve the Q2 value significantly, the 
GA selection will be stopped. In this study, genetic 
algorithm and multiple linear regressions (GA-MLR) the 
QSARINS software performed using Ordinary Least Square 
method [28]. The important parameters used in the GA 
process were set as below: population size 100, maximum 
allowed descriptors in a model 3 and reproduction/ mutation 
trade-off 0.5. Finally, we obtained a 3-descriptor subset, 
which keeps most interpretive information for critical 
temperatures.  Three  descriptors  were  calculated  for  each  

 
 
compound in the data set. The selected descriptors are 
enthalpy of vaporization at boiling point (∆Hvap), molar 
refractivity (MR) and Hansen dispersion forces (DF). 
 
QSPR Modeling and Validation 
 The models have been developed by multiple linear 
regression (MLR) using the ordinary least squares (OLS) 
method, and the genetic algorithm-variable subset selection 
(GA-VSS) has been applied for variable selection using the 
in-house software for QSAR modeling, QSARINS. 
Different parameters have been used to validate the models. 
The coefficient of determination R2 has been used as a 
measure of the total variance of the response explained by 
the regression model (i.e. goodness-of-fit). Model 
robustness has been verified by the cross-validation 
coefficient Q2

LOO (leave-one-out) and Q2
LMO (leave many- 

out, i.e. 30% of chemicals excluded in each iteration). To 
exclude the possibility of chance correlation between 
modeling descriptors and the response, the Y-Scrambling 
method has been applied [33], which verifies the fitting of 
the model developed on randomly re-ordered responses 
(2000 scrambling iterations); where a low value of the 
averaged R2 scrambled (R2

ys) is indicative of a well- 
founded original model.  
 It is expected that the resulting QSPR model should 
generally have low R2 and low Q2

LOO values. If Q2
yscr < 0.2, 

and R2
yscr < 0.2, there is no risk of chance correlation in the 

developed model. In the present study, y-randomization was 
performed 2000 times. The external validation of the model 
has been performed based on four different parameters, i.e. 
Q2

ext-F1, Q2
ext-F2, Q2

ext-F3 and CCC (concordance correlation 
coefficient) [34,35]. 
 Arbitrary cut-off values have been used to accept models 
as externally predictive, in the case of small data sets: 0.7 
for Q2

ext-F1, Q2
ext-F2 and Q2

ext-F3 and 0.85 for CCC. In 
addition, the root means squared of errors (RMSE), that 
summarizes the overall error of the model, has been used to 
measure and compare prediction accuracy in the training 
(RMSEtr) and in the prediction (RMSEpr) sets. Formulas of 
these validation parameters are given as Supplementary 
Information. 
 
Applicability Domain (AD) 
 QSPR   model    must    always    be   verified   for   their 
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applicability domain (AD). In this study, the AD is 
quantified by applying the leverage approach, which is 
based on the calculation of the hat matrix for the structural 
domain. The diagonal values of the hat matrix (h) are used 
to verify the presence of structural outliers, which are 
structurally very influential in determining model 
parameters [36]. Structural outliers are those compounds 
with h greater than the cut off values h*, in the training set. 
The h* value is calculated as 3p’/n, where p’ is the number 
of the model variables plus one, and n is the number of 
training compounds. Response outliers are identified as 
those compounds with cross-validated standardized 
residuals greater than 2.5 standard deviation units. Both 
types of outliers have been detected using the Williams plot, 
i.e. the plot of the diagonal values of the hat matrix (h) 
versus standardized residuals. The leverage approach has 
also been applied to evaluate the degree of extrapolation for 
the predictions obtained for compounds lacking 
experimental data. Data predicted for high leverage 
chemicals (h > h*) have been considered less reliable since 
they are extrapolations from the structural domain of the 
model. The plot of diagonal hat values vs. predicted values, 
here named Insubria graph, is provided to visualize 
interpolated and extrapolated predictions. 

 
RESULTS AND DISCUSSION 
 
Result of GA-MLR 
 After the pre-reduction step of the descriptors calculated 
by MMP+, totally 72 descriptors were retained for each 
compound. To select the optimal descriptor subset, 72 
descriptors were used as inputs for GA variable selection 
procedure. When adding another variable did not improve 
the performance of the model significantly, it means that the 
optimal subset size was obtained. Finally, a 3-variables 
model was taken as the optimal MLR model. The regression 
equation and the statistical items of the optimal model were 
as follows: 
 

DFMRHTc vap )65.2(85.8)14.1(15.4)26.1(00.7)15.27(46.72   

 
ntr = 159, R2 = 0.9752, RMSEtr = 13.8994, F = 2032,  
 

2
LooQ  = 0.9742, RMSELoo = 14.1889,  2

LMOQ = 0.9738,  

 
 
s = 14.0776, 2

gscreamblinYR  = 0.0185, 2
gscreamblinYQ  = 0.0329 

 
next = 39,  2

1FQ = 0.9762, 2
2FQ = 0.9762,  2

FaQ = 0.9788,  

CCCext = 0.9881, RMSEext = 12.8654 

 
The statistical parameters of the model are satisfying and 
prove that the MLR model is stable, robust and predictive. 
In addition, the low value of R2

Y_scrambling indicating that the 
obtained model has no chance correlation. The results of 
coefficients analysis of equation are shown in Table 1. 
 The results of our work are compared with the previous 
study on critical temperatures of organic compounds and 
refrigerants [11-13]. In Table 2 results of the comparison, 
statistical data are shown. The plot of predicted Tc versus 
experimental Tc and the residuals (experimental Tc - 
predicted Tc) vs. experimental Tc values, obtained by the 
GA-MLR modeling, and the random distribution of 
residuals about zero means are shown in Fig. 1. The 
predicted values of Tc and residuals obtained by the GA-
MLR method are presented in Supplementary Information. 
 The interpretation of the modeling descriptors in the 
proposed models selected by GA could provide an effective 
way to gain some insight into factors that are likely to affect 
Tc of compounds. Here, three theoretical molecular 
descriptors were selected and the relative importance of 
them can be represented by their standardized regression 
coefficients. As can be seen from Equation, the most 
significant descriptor (standardized coefficient: 0.5183) is 
the ∆Hvap, which is the Enthalpy of vaporization at the 
boiling point (kJ mol-1). 
 Its positive coefficient indicates that the critical 
temperature capability increases with the increasing of the 
∆Hvap of compounds. Positive values in the regression 
coefficients indicate that the indicated descriptor contributes 
positively to the value of Tc.  In other words, increasing the 
∆Hvap, MR and DF will increase absolute value Tc of the 
organic compounds.  
 The predicted values are in good agreement with the 
experimental values. The robustness of each model was 
expressed by the cross-validated (leave-one-out technique, 
LOO) validation coefficient ( 2

LooQ ) and the root mean 

square errors of LOO cross-validation (RMSELOO). 
Successfully   validated    QSPR    model    with   confirmed 
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                 Table1. Results of Coefficients Analysis of GA-MLR Model 
 

Variable Coeff. Std. coeff. Std. err. 

(+/-) Co. int. 

95% p-value 

t-ratio 

Intercept 72.4599  13.7451 27.1518 0.0000 5.2717 

∆Hvap 7.0039 0.5183 0.6382 1.2608 0.0000 10.9739 

MR 4.1509 0.3215 0.5800 1.1458 0.0000 7.1563 

Disp 8.8522 0.1738 1.3427 2.6523 0.0000 6.5929 

 

 

 

                     Table 2. Comparison between A. Ferri Model, Kh. A. M. Gasem Model and M.A. Sobati Model  
                                   and this Work for the Critical Temperature Correlation 
 

 A.Ferri Kh. A.M. Gasem M.A. Sobati This work 

Training set 133 1230 159 159 

Test set 20 - 39 39 

Number of 

descriptors 

8 12 6 3 

R2 0.9856 0.913 0.9651 0.9752 

RMSEtr 12.6 16.1 17.5943 13.8994 

Q2
loo - - 0.9671 0.9742 

Q2
ext - - 0.9670 0.9766 
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R2 = 0.9766
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Fig. 1. Scatter plot of the experimental Tc vs. predicted and residual Tc values for training, and testing sets of  

             198 refrigerants compounds. 
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Fig. 2. Y-Scramble plot of Kxy vs. R2 and Q2 for random models (Kxy: correlations among the block of the  

              descriptors and the experimental data). 
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predictive abilities was used to predict Tc for all 39 
compounds. The internal predictive capability of a model 
was evaluated by leave-one-out cross-validation ( 2

LooQ = 

0.9742) on the training set, and the predictive capability of a 
model on external prediction set can be expressed by 2

extQ = 

0.9766.  
 The model was subsequently validated using the 
response permutation test, also known as Y-scrambling. 
This procedure involves fitting several models, on the same 
dependent variables but on a permutated response. It gave 
the following results: the random models performed using a 
scrambled order of the Tc values, found to have 
significantly lower R2

Y-scr = 0.0190 and 2
scrYQ 

= 0.0324 than 

the original model corroborating the statistical reliability of 
the actual model (see Fig. 2). In Fig. 2 correlations among 
the block of the descriptors and the experimental Tc data vs. 
R2 and Q2 for random models are showed. If Q2

yscr < 0.2 and 
R2

yscr < 0.2, there is no risk of chance correlation in the 
developed model. In the present study, y randomization was 
performed 2000 times. 
 The Williams plot of the regression allows a graphical 
detection of both the outliers for the response and the 
structurally influential chemicals in a model. The leverage 
(h) of a compound measures its influence on the model. In 
the standardized residuals plot, all values are within the (-
2.5; +2.5) range, which confirms that there are no outliers. 
To visualize the AD of a QSPR model, the plot of 
standardized residuals vs. leverage values (h) (Williams 
plot) can be used for an immediate and simple graphical 
detection of both the response outliers and structurally 
influential chemicals in a model (h > h* = 0.0755). Samples 
with high leverages have a stronger influence on the model 
than other samples; they may or may not be outliers, but 
they are influential. An influential outlier (high residual + 
high leverage) is the worst case; it can however easily be 
detected using an influence plot. Leverages are useful for 
the detection of samples, which are far from the center 
within the space described by the model. If a sample has a 
very large leverage, it may be different from the rest and 
can be considered to be an outlier. Large leverage indicates 
a high influence on the model. In the Williams plot for AD , 
As can be found there is no outlier  and leverage chemical 
in the training and test  set  used  in  this  study  (see Fig. 3).  

 
 
The Insubria graph of this model reported in Fig. 4. This 
figure shows that GA-MLR model cover a large part of the 
structural domain occupied by the 198 refrigerants and is 
similar William plot. Additionally, Figs. 3 and 4 show that 
the training set is a good representative of the chemical 
space occupied by the 198-screened compounds.  
 
Interpretation of Descriptors 
 All descriptors were calculated for the neutral species. 
The Tc is assumed highly dependent upon the ΔHvap, MR 
and DF. In the present study, the QSPR model was 
generated using a training set of 159 molecules. The test set 
of 39 molecules with regularly distributed Tc values was 
used to assess the predictive ability of the QSPR model 
produced in the GA-MLR modeling. The critical 
temperature of a compound was determined by the different 
intermolecular interactions between molecules, such as 
dipole-dipole, dispersion, electronic and hydrogen-bonds 
interactions. The descriptors in the present model can 
account for these interactions. The three descriptors 
involved describe the size and different intermolecular 
interactions between molecules. 
 The first descriptor is enthalpy of vaporization (∆Hvap). 
The change of one phase of a substance to another phase is 
called phase transition. Therefore, vaporization is a phase 
transition. The energy that must be supplied as heat at 
constant pressure per mole of molecules that are vaporized 
under standard conditions is called the standard enthalpy of 
vaporization of the liquid. The ∆Hvap is a criterion of 
intermolecular interactions in liquids. The ∆Hvap has a high 
square correlation coefficient with Tc (R2 = 0.956).  The Tc 
increases with increasing the ∆Hvap of a compound. 
 The second descriptor is molar refractivity (MR). In the 
following equation, MR has been explained: 
 
 








 .
1
1.

2
1

2

2




d
MW

n
nMR  

 
where MW is the molecular weight, d the liquid density, and 
V  the molar volume, and n the refractive index of the liquid 
referred to the sodium D line, and its square coincides with 
the dielectric constant ε. MR is the measure of polarizability 
and molar volume. The MR has a high square correlation 
coefficient  with  Tc (R2 = 0.934).  Increasing  MR  leads  to  
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Fig. 3. Williams plot of hat values (h* = 0.075) vs. standardized residuals (±2.5σ) for training and 
                 testing sets. 
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Fig. 4. Insubria graph of hat values (h* = 0.075) vs. predicted Tc for training and testing sets. 
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increasing intermolecular forces. Accordingly, increasing 
the intermolecular forces, increases extent of Tc related to 
each refrigerant.  
 The third descriptor is Hansen dispersion forces 
(DFs). The DF of attraction, existing between molecules, 
has no permanent dipole. The van der Waals force is an 
attractive force between two atoms or nonpolar 
molecules. This term is attributed to the interaction 
between two dipoles arising from the dipole fluctuation 
of one molecule which induces a dipole in the other. 
With increasing molecular weight, molecular volume 
and surface area, the van der Waals forces increase. Van 
der Waals attractive forces exist between all polar and 
non-polar molecules. The dispersion forces have a high 
square correlation coefficient with Tc (R2 = 0.814). 
Critical temperature increases with increasing 
dispersion forces. 
 
CONCLUSIONS 

 
 In this work, MLR used to construct linear QSPR 
models to predict critical temperatures of a diverse set of 
refrigerants. The use of genetic algorithms for descriptor 
reduction is effective in developing linear-QSPR property 
model. The results of this study indicate that the use of 
∆Hvap, MR and DF descriptors provide good estimate for 
critical temperatures. 
 The results indicates that the goodness of fit, robustness, 
and predictivity of GA-MLR model were significant for 
internal and external validations. In addition, the 
applicability domain of the optimal GA-MLR model is 
verified by the leverage approach. Through the mechanism 
interpretation of the selected three molecular descriptors, we 
can gain some insights into main molecular structural 
factors governing the Tc of a compound. In conclusion, the 
model proposed in this work provides a feasible, effective 
and practical tool to predict the critical temperatures of 
refrigerant compounds. 
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Appendix A. Supplementary Information related to 
this article can be found at ... 
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