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      Dihydroorotate dehydrogenase (DHODH) is a rate-limiting enzyme in the biosynthesis of pyrimidine, which catalyzes the oxidation of 

dihydroorotate to orotate. Uridine monophosphate is biosynthesized by orotate. DHODH inhibitors have been shown to have antiviral activity 

against cytomegalovirus, Ebola, influenza, Epstein-Barr virus, and picornavirus. The anti-SARS-CoV-2 activity of DHODH inhibitors has 

also been investigated. DHODH inhibitors, including leflunomide and its metabolite teriflunomide, have been found to have anti-SARS-

CoV-2 activity. In relation to the importance of this enzyme (i.e., DHODH) in drug design, the present study aimed to develop statistically 

robust and interpretable 2D- and 3D-quantitative structure-activity relationship (QSAR) models based on a dataset of 92 molecules of 

biologically active 2-aryl-4-quinoline carboxylic acid analogs, reported as DHODH inhibitors. The correlation coefficient (R2) values of the 

training set of the partial least squares (PLS) and all five Kernel-based PLS models for the respective fingerprints were found to be 0.7091, 

0.8336 (linear), 0.7586 (radial), 0.8606 (dendritic), 0.6832 (desc), and 0.7670 (Molprint 2D), respectively (R2 ≈ 0.9). However, the external 

validation coefficient (Q2) values of the test set were found to be 0.7009, 0.7503 (linear), 0.7737 (radial), 0.8250 (dendritic), 0.6756 (desc), 

and 0.7533 (Molprint 2D), respectively (Q2 > 0.6). The developed 4-point pharmacophore model (ARRR_1), with one hydrogen bond 

acceptor and three aromatic rings, was found to be crucial in preserving the activity of 2-aryl-4-quinoline carboxylic acid analogs as DHODH 

inhibitors. Furthermore, the molecular docking of DHODH inhibitors against SARS-CoV-2 target proteins revealed the significant role of 

DHODH inhibitors.  
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INTRODUCTION 
 
      Dihydroorotate dehydrogenase (DHODH), as an iron-
containing flavin-dependent enzyme found in the inner 

membrane of mitochondria, is the most researched and 
distinct  therapeutic  target  among  several  viral  agents [1].  
 
*Corresponding author. E-mail:  mali.suraj1695@gmail. 
com 

Dihydroorotate was converted to orotate by the fourth 
enzyme for the de novo pyrimidine biosynthetic process [2]. 
These pyrimidines are necessary for the production of certain 

phospholipids and nucleic acids, such as RNA and DNA [2]. 
De novo synthesis and salvage are the two main mechanisms 
for the biosynthesis of pyrimidines.  
      Pyrimidines are biosynthesized via the salvage synthesis 
pathway in resting or fully differentiated cells whereas highly 
proliferative cells, such as tumor cells, where the demand for  
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the nucleic acid precursors and other cellular components is 

higher, have been reported to be more active in the de novo 

biosynthesis [3]. DHODH inhibitors impact pyrimidine 

biosynthesis, lower pyrimidine levels, and delay or stop cell 

cycle progression at the S-phase, which calls for an adequate  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

concentration of pyrimidines [4]. Numerous treatments for 

many diseases, including parasite disorders, have been 

triggered by pyrimidine depletion via DHODH inhibition in 

host cells. The detailed pathway involved in DHODH 

biosynthesis is illustrated in Schemes 1a and 1b [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 1. (a) Pyrimidine de novo biosynthesis pathway [4] 

 

 
Scheme 1. (b) The role of dihydroorotate dehydrogenase (DHODH) in the de-novo pyrimidine biosynthesis and the 

mitochondrial respiratory chain [4] 
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      Due to the fast DNA replication and nucleic acid 

production, the need for nucleic acid precursors increases 

rapidly in proliferative cells such as activated T cells. This 

process triggers the synthesis of pyrimidines activating the de 

novo pathway [4]. As a result, the role of DHODH in rapidly 

proliferating cells, such as cancer cells that are especially 

vulnerable to nucleotide biosynthesis inhibition, has gained 

increasing prominence. Cancer cells are far more susceptible 

to DHODH inhibitors than normal cells in a nutrient-depleted 

microenvironment and tumor hypoxia. Brequinar, 

leflunomide (HR486), which lowers the proliferation of CRC 

cells, doxorubicin, fludarabine, ASLAN003 (Phase II clinical 

trial), and other RNA interference or DHODH-blocking 

inhibitors have been shown to either stop cell growth or 

sensitize cells, also known as the anti-proliferation effect [5]. 

A wide range of quinoline-based DHODH inhibitors have 

been previously investigated [6]. Brequinar was found to 

inhibit human (h) DHODH in A549 cells infected with 

dengue virus and other flaviviruses, such as West Nile virus, 

yellow fever virus, vesicular stomatitis virus, and Western 

equine encephalitis virus. Brequinar is one of the broad-

spectrum anti-viral drugs that inhibit the replication of 

evolutionarily diverse viruses by inhibiting a cellular factor 

or host pathways [7]. 

 

 

 

 

 

 

      In addition, brequinar inhibits dengue virus RNA 

synthesis by disrupting intracellular pyrimidine pools. 

Another 4-quinoline carboxylic acid analog (1) was shown to 

have antiviral activity (EC50 = 4650 nM against vesicular 

stomatitis virus (VSV)) and inhibit hDHODH (IC50 =                    

260 nM), which is linked to antiviral activity. Based on the 

structure-activity relationship (SAR) study, analog (2) 

demonstrated a strong inhibitory effect against viruses                      

(EC50 = 2 nM for VSV and 41 nM for viral influenza (WSN)) 

and hDHODH (IC50 = 1.0 nM), and its effect was more potent 

than that of brequinar. 

 

 

 
 

   
 

 

      In the present study, robust and statistically validated 

quantitative structure-activity relationship (QSAR) models, 

along with a pharmacophore model, were developed for the 

reported series of DHODH-blocking inhibitors using the 

Schrodinger suite (2020) for drug discovery [8-17]. To 

identify the structural requirements for the current scaffold, 

the following models were applied: 1D/2D and 3D-QSAR 

models, such as multi-linear regression, partial least squares 

(PLS), and Kernel-based PLS (KPLS) models as 2D QSAR 

models, and atom- and field-based 3D-QSAR models, as well 

as pharmacophore alignment-based 3D-QSAR models [8-

10].  

      Furthermore, we used molecular docking analysis to 

examine whether these DHODH inhibitors had plausible 

correlations with different varieties of SARS-CoV-2 targets. 
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MATERIALS AND METHODS 
 

      Dataset A series of biologically active quinoline 

carboxylic acid analogs that were previously reported as 

inhibitors of human DHODH were selected for the QSAR 

study [6-7]. All 92 molecules (e.g., R1 = COOH, COOR, 

CHROH, CHCF2, COR, aryl, CON; R2 = H, Me; R3 = H, F, 

Cl, CF3; R4 = alkyl, alkoxy, aryloxy, halo, amino; R5 & R6 = 

H, alkyl, alkoxy; and X = CH/C/N) had diverse substitution 

patterns around the quinoline ring (Fig. 1). All these 

compounds were reported as DHODH inhibitors against the 

host cell targeted by different viruses or infected with 

different types of cancer. In this study, we focused on 

DHODH inhibition, which is reported in SI. Table S1 as half 

maximal inhibition concentration (IC50 reported in nM) 

values. All 92 selected molecules were divided into two sets 

of test and training sets, and their biological activities were 

converted to pIC50. 

 
Ligand Preparation and Docking Methodology 
      Structures of all the molecules were drawn in 

ChemBioDraw Ultra 12.1, and their ‘SMILES’ were copied 

and then utilized for the structure generation in the 

MASTERO interface (version 12.6) [16-17]. Geometry 

optimization, hydrogen addition, energy minimization, and 

ligand preparation were done by the same tool (Maestro 

12.6). The lowest energy ionization of conformers was also 

considered. This led to the development of lowest-energy 

conformers structures for a given set of ligands at a defined 

range of pH (7.0 ± 2.0), and the developed structures were 

optimized for the optimized potentials for liquid simulations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(OPLS-2005) force field for the simulation of ligands. 

Molecular docking was then carried out for the selected 

molecules using Glide (v. 8.9). Overall, molecular docking 

comprises the following five main steps: 1) protein 

preparation, 2) ligand preparation, 3) receptor grid 

generation, 4) ligand docking procedure, and 5) examination 

of the docking results. Properties generated by Prime 

molecular mechanics/generalized Born surface area 

(MM/GBSA) are helpful in determining the energies of 

ligand-receptor complexes. The detailed protocol with 

coordinates is provided in the Supplementary materials. 

 

QSAR Modeling, Validation, and Common 
Pharmacophore Hypothesis (CPH) Generations 
      After the preparation of ligands, as described above, 

different types of regression, atom- and field-based QSAR 

models were developed using the PHASE module (2021). All 

the models were developed through the random/seed 

selection of the test set and training set into 30%:70% by 

software, as described in the literature [16-17]. In all models, 

activity (pIC50 value) was considered as the dependent 

variable, and other descriptors were considered as 

independent variables. Details of dataset splitting and QSAR 

calculations are discussed in the ‘Results and Discussion 

Section’. The validation of QSAR models was carried out 

using the statistical validation criteria reported in the 

literature [16-17]. 

 
Adsorption, Distribution, Metabolism, Excretion, 
and Toxicity (ADMET) Predictions by QikProp 
      QikProp  module  (QikProp,  v. 6.6,  Schrödinger,   LLC) 

 

 

 

 

 

 

 

 

 

 

 

 

 

     
Fig. 1. Basic and aligned structures of 2-aryl-4-quinoline carboxylic acid analogs used in the current study. 
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was used to predict ADMET properties [16-17]. Today, 

QikProp is used to make predictions about numerous 

physically and pharmaceutically significant descriptors of 

organic compounds. In addition to making predictions about 

the chemical properties of compounds, QikProp provides 

bounds for contrasting the properties of a certain molecule 

with those of 95% of known medications. Additionally, 

QikProp informs users of 30 different reactive functional 

group types that might lead to erroneous results in high-

throughput screening tests [16-17]. 

 
RESULTS AND DISCUSSION 
 
1D/2D-Based QSAR Model Development and 
Validation 
      QSAR models, with 12 descriptors, were developed and 

initially considered in the test set for 27 molecules and later 

in the training set for 65 molecules. The values of 

experimental activities, predicted activities, and errors of 

these models are reported in Table S2. All prepared ligands 

(output files of LigPrep module) were opened in the 

CANVAS module of Schrodinger and their 819 descriptors 

were obtained from the molecular descriptor tool. Then, the 

pIC50 values were added and descriptors were further allowed  

for the feature selection utility to remove the constant, highly 

correlated, and informative descriptors (R2 > 0.8). A total  of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 descriptors were found to be useful and other descriptors 

were removed from the data automatically. The 12 

descriptors included aOm_Cnt, aasC_Cnt, ssCH2_Cnt, 

ALOGP6, ALOGP9, PEOE13, PEOE14, PEOE7, 

Total_structure_connectivity, 

average_connectivity_index_chi-2, 

mean_topological_charge_index_of_order_4, and 

mean_topological_charge_index_of_order_8. These 

descriptors did not have any direct correlation with their 

inhibitory effect and subsumed physicochemical, quantum 

chemical, topological, and constitutional parameters. The 

values of these descriptors are reported in Table 1.  

      The QSAR model was developed by performing stepwise 

regression analyses and using the above 12 descriptors, as 

independent variables, and activity (pIC50), as the dependent 

variable. All the QSAR data were analyzed using the multiple 

linear regression (MLR) method.  

      The quality and utility of regression models depend on 

different parameters such as R2, Q2, SD, RMSE, r-Pearson, 

etc. The quality of the developed model was evaluated using 

the squared correlation coefficient (R2 > 0.67), Q2 > 0.5, and 

root mean square error (RMSE). In the developed model, R2 

indicated how the equation fitted the data while Q2 reflected 

the predictive performance and stability of the predicted 

QSAR model. Also, the cross-validation of the model 

parameters  (i.e.,  R2
cv or Q2)  was  considered.  The  average 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. The Values of Descriptors for Models 1 and 2 Developed by the MLR Method 

 

Variable Coefficient Std. Err. T 

Intercept 5.4280e+000 2.1994e+000 2.4679 

aOm_Cnt 8.7843e-001 1.8449e-001 4.7614 

aasC_Cnt 5.8101e-001 1.1426e-001 5.0850 

ssCH2_Cnt 3.6916e-002 1.8444e-002 2.0015 

ALOGP6 -4.5091e-003 2.4123e-003 1.8692 

ALOGP9 6.8270e-003 2.5830e-003 2.6431 

Average_connectivity_index_chi-2 -1.1122e+001 4.5563e+000 2.4410 

Mean_topological_charge_index_of_order_4 -2.5891e+001 6.1408e+000 4.2162 

Mean_topological_charge_index_of_order_8 -8.1773e+001 2.2845e+001 3.5795 

PEOE13 2.2274e-001 6.0819e-002 3.6623 

PEOE14 -6.1389e-002 2.6792e-002 2.2913 

PEOE7 -2.6604e-002 6.3641e-003 4.1803 

Total_structure_connectivity -1.4776e+003 4.0945e+002 3.6087 
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ranking score of model 1 was found to be 0.687155, with the 

number of independent variables being 06. Other parameters 

are presented in Table 2. To validate the data set selected for 

the model development, the molecules were divided into two 

sets of the training set and the test set for external predictions. 

The best regression model was predicted by observing the 

standard deviation (s) and the multiple correlation 

coefficients (R2). 

      The applicability domain of the developed model was 

visualized by the Williams plot of the training and test sets of 

molecules for the MLR model (Fig. 2). Figure 2 shows the 

goodness of fit between the actual (observed) and calculated 

(predicted) activities of both test and training sets of 

molecules.  

      QSAR    equations    were    developed   by   considering 

 

 

Table 2. PLS Parameters of the MLR Models of 2-Aryl-4-

quinoline Carboxylic Acid Analogs 

 

MLR 

Model 

Training set Test set 

S.D. R2 RMSE Q2 

 0.7871 0.6743 0.6870 0.7161 

 

 

 
Fig. 2. A 2D-MLR model plot of observed activity vs. 

predicted activity (pIC50) of A, P01-P91 of 2-aryl-4-quinoline 

carboxylic acid analogs. 

 

 

different combinations of the available descriptors. A total of 

27 2-aryl-4-quinoline carboxylic acid analogs were selected 

and placed in the test set. As discussed earlier, 65 analogs 

were put in the training set. Also, as mentioned previously, 

12 independent variables (descriptors) were used to develop 

the MLR model and establish the correlation between the 

pIC50 and the selected descriptors. The correlation coefficient 

(standard deviations) value for each descriptor was 

examined, and it was found that the highest correlation 

coefficient belonged to the aOm_Cnt. Model 1 was 

developed to obtain the inhibitory concentrations of 2-aryl-4-

quinoline carboxylic acid analogs using 92 molecules. Model 

1, along with its six descriptors, is presented below.  

 

      pIC50 (pred.) = 5.4280e + 000(2.1994e+000) + 8.7843e-

001(1.8449e-001) aOm_Cnt + 5.8101e-001(1.1426e-001) 

aasC_Cnt + 3.6916e-002(1.8444e-002) ssCH2_Cnt - 

4.5091e-003(2.4123e-003) ALOGP6 + 6.8270e-

003(2.5830e-003) ALOGP9 - 2.6604e-002(6.3641e-003) 

PEOE7                                                                        Model 1 

 

All statistical parameters for the model were obtained within 

the acceptable limits explaining the external and internal 

predictive potential of the developed QSAR model. The 

lower RMSE value predicted that the developed model was 

good enough for further consideration and use. Fingerprints 

used in PLS and KPLS models were a set of descriptors 

(binary, numeric, categorical, etc.) that could be easily 

assembled into a string (characteristics of the molecules). A 

fingerprint-based method was used to generate a wide variety 

of possibilities including fragment-based similarity 

searching, bit scaling rules, atom/bond typing schemes, and 

similarity indices. PLS and KPLS-QSAR models were 

generated using the above-mentioned fingerprints as 

molecular descriptors. Both PLS and KPLS predictive 2D-

models were generated in the CANVAS module of the 

Schrodinger suite.  

      In its original domain of chemometrics, the PLSR method 

has been referred to as one of the most popular regression, 

classification, and discrimination techniques. It is a popular 

statistical tool specifically designed for dealing with multiple 

regression problems where the number of observations is 

limited, missing data are nonignorable, and the correlation 

between the predicted variables is  high. It is  basically more  
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applicable when the number of observed variables is much 

higher than the number of observations and a high 

multicollinearity exists among the variables. Similarly, in the 

Kernel-based model and regression development, the original 

data are mapped to a high-dimensional feature space. In a 

high-dimensional predictive model, overfitting may lead to a 

decrease in the prediction accuracy of the external data. Both 

PLS and nonlinear PLS algorithms have been utilized for 

model development. 

      A KPLS model was found to be more competitive and 

even more stable than other kernel algorithms, such as kernel 

ridge regression and support vector machines. In the present 

study, 92 (2-aryl-4-quinoline carboxylic acid) analogs, which 

their minimum inhibition concentration for DHODH 

inhibition was reported previously in the literature, were 

used. The structures of all these compounds are available in 

the supplementary materials. In total, 12 descriptors were 

considered and the model was trained by the training set (65 

molecules) and validated independently by the test set (27 

molecules) (Table S3). All the molecules were energy-

minimized and then used to define the 2D fingerprint, which 

was used as an X variable combined with the pIC50, for the 

KPLS QSAR model. A KPLS model was developed by 

keeping the Y-variable as the experimental activity and X-

variable as the fingerprint with selected independent 

variables (descriptors) depending on the fingerprint.                        

Five (hashed) types of fingerprints, including 

linear/radial/dendritic/desc/molprint, of the seven available 

fingerprints, were selected and considered as the structural 

MACCS keys of the study. The number of descriptors 

selected was large enough to develop the intended models. 

The maximum number of KPLS factors was set to 1 and a 

nonlinear kernel was defined at 0.05. The selected molecules 

were divided randomly into training and test sets with a ratio 

of 70%:30%. Bootstrapping was conducted for the random 

sampling of the training set with replacement to create a new 

set with the same size. This was repeated until the expected 

results for the QSAR descriptors were obtained (Table S4).  

      KPLS is a nonlinear Gaussian model with a higher 

predictive ability than conventional property-based models. 

In other words, it is an extension of the PLS regression that 

introduces some non-linearity to the scalar products of           

X-variables. The best KPLS regression model for the 

fingerprints was selected. This was shown by the good values  

 

 

of the parameters of the final model, the high predictive 

ability of the model for the external test set, and low 

uncertainties. The models predicted the DHODH inhibitors 

with the highest accuracy. The ADME and other properties 

of the analogs are reported in supplementary files. All five 

fingerprint descriptors resulted in the best models of the 

dendritic fingerprint with a better ability for the test set 

molecules and lower uncertainty. The correlation coefficient 

(R2) values of the training set of the PLS and all five KPLS 

models for the respective fingerprints were found to be 

0.7091, 0.8336 (linear), 0.7586 (radial), 0.8606 (dendritic), 

0.6832 (desc), and 0.7670 (Molprint 2D), respectively, while 

the external validation coefficient (Q2) values of the test set 

were calculated as 0.7009, 0.7503 (linear), 0.7737 (radial), 

0.8250 (dendritic), 0.6756 (desc), and 0.7533 (Molprint 2D) 

with lower values of uncertainties, respectively. The residual 

errors, SD, and RMSE, presented in Table S3, were overall 

acceptable for all the above models (Fig. 3). Among the five 

fingerprints, the dendritic fingerprint gave the best 

performance. Therefore, it was assumed that fingerprint 

descriptors (with the priority given to the linear and dendritic 

fingerprints) could be used for modeling and that they could 

lead to optimization with the selected set of molecules as 

DHODH inhibitors.  

      Among the five models, the KPLS model with the 

dendritic fingerprint was found to be the best model with 

good coefficient and KPLS regression curves with a high 

predictive ability for an external test set of data. Figure 3 

shows model correlation plots for 2-aryl-4-quinoline 

carboxylic acid analogs for PLS and KPLS for five 

fingerprints. The contributing effects of each atom and 

fragment are also shown in 2D plots. The analysis of the plot 

confirmed that the linear and dendritic fingerprint model 

gave the best agreement between the experimental and 

predicted DHODH inhibition of 2-aryl-4-quinoline 

carboxylic acid analogs. 

 
3D QSAR Modeling (Atom- and Field-Based QSAR) 
      After the preparation of ligands, all ligands were 

superimposed on each other using ‘flexible ligand alignment’ 

from MAESTRO. All 92 analogs of 2-aryl-4-quinoline 

carboxylic acid were used for the generation of atom-based 

and field-based QSAR models using Phase. All the molecules 

were divided  into the test and training sets based on a 30:70  
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(A) The PLS model (B) The KPLSR model (linear) 

  

(C) The KPLSR model (radial) (D) The KPLSR model (dendritic) 

  

(E) The KPLSR model (desc) (F) The KPLSR model (molprint2D) 

Fig. 3. A 2D-MLR model plot of observed activity vs. predicted activity (pIC50) of A, P01-P91 of 2-aryl-4-quinoline 

carboxylic acid analogs. 
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ratio (i.e., 27 test molecules and 65 training molecules). All 

training and test sets of molecules with a PLS factor of 3 were 

considered for the development of atom-based QSAR 

models. In addition, three field-based QSAR models were 

developed (Phase, Schrödinger, 2018). To develop the free 

energy force field (FEFF) 3D-QSAR model, 27 molecules in 

the test set and 65 molecules in the training set were used. 

The observed and predicted activities of all three models are 

shown in Tables S5 and S6. Grid spacing was kept as 1 A 

extended by 3 Å beyond the training set atoms. The steric 

force field within 2 Å of any training set atom was ignored 

while the PLS factor for the atom-based QSAR and FEFF 

3D-QSAR was kept at 3.   

      Different molecular features, such as H-bond donor, 

hydrophobic/non-polar, and electron-withdrawing, were 

used for the generation of an atom-based QSAR model. A 

Gaussian-based QASR model was used for the generation of 

field-based QASR models, which included five different 

features such as Gaussian hydrophobic, Gaussian 

electrostatic, Gaussian steric, Gaussian H-bond acceptor, and 

Gaussian H-bond donor groups. In developing field-based 

models, a truncate steric force  field  of  30.0 kcal mol-1  was  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

used, and variables with StdDev < 0.01 and with ǀ t value ǀ < 

2.0 were eliminated. Gaussian intensities (descriptors) were 

utilized as independent variables in field-based models. The 

best developed QSAR models were further selected on the 

basis of the robustness of statistical parameters (Tables S7 

and S8). 

 
Validation of 3D-QSAR Models 
      The stability, robustness, and predictive power of the 

models were examined by leave-one-out (LOO) cross-

validation. The best QSAR model was selected for QSAR 

visualizations. The predictive power of the selected model 

was determined from the RMSE, Q2, and Pearson’s r of the 

test set molecules as well as the R2 and R2
CV/scramble of the 

training set (Table S9) [16-17]. 

 
Mechanistic Interpretations of the Generated QSAR 
Models 
      Field-based 3D-QSAR models. Scatter plots for the 

predicted vs. actual activities of the training, test, and all sets 

of molecules for the best atom- and field-based models are 

visualized in Fig. 4. Contour map analysis  was used  for the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
A) Steric_Steric model B) Electrostatic_steric model C) hydrophobic_steric model 

  
D) H-bond donor_steric model E) H-bond acceptor_model F) All molecules_steric model 

Fig. 4. Field-based QSAR models A) Gaussian steric field: favored (green), unfavorable (yellow); B) Gaussian electrostatic 
fields: favored electropositive (blue), disfavored electronegative (red); C) Gaussian hydrophobic field: favored (yellow), 
disfavored (white); D) Gaussian Hydrogen-bond acceptor field: favored (blue), disfavored (magenta); E) Gaussian 
Hydrogen-bond acceptor field: favored (red), disfavored (magenta); and F) the presence of all types of force fields. 
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development of the best model (Fig. 4). Regions with green 

color in the counter map are favored and show a positive 

contribution to the activity while yellow regions are 

disfavored and show a negative contribution to the activity. 

Sterically hindered groups on the R4 position that are attached 

to aryl rings enhanced the activity while other sterically 

hindered groups did not affect the effect of DHODH 

inhibition. H-bond donor and acceptor groups attached to the 

side chain at R2-groups (C3-position), R1-groups (CO-

position), and R4-groups (aryl substitutions) altered the value 

of activity; that is, change in activity was dependent on the 

nature of H-donor and acceptor groups, as shown in Figure 4. 

The groups or atoms with hydrophobic effects marginally 

affected activity at a maximum position, which is thought to 

be controlled or balanced by other electronic substituent 

properties. The electrostatic effect at the R2, R1, R4, and R5 

positions of the aryl ring denoted a negative contribution 

while the C3 and C5 groups of the aryl ring at R4, R1, and R3 

positions displayed a positive contribution in the activity. The 

statistical parameters and field fractions of the field-based 

QSAR model showed good results regarding Q2 and R2 [16-

17]. 

      The scatter plots of predicted activity vs. actual activity 

of all three models and the training and test set molecules of 

the model for the field-based QSAR models are shown in         

Fig. 5. 

      Atom-based 3D-QSAR models. In the atom-based 

QSAR models, an increase in activity was correlated with 

blue-colored cubes while red-colored cubes indicated a 

decrease in activity. A region with blue color in the counter 

map is highly important for the activity index. In Schrodinger 

software, output results or occlusion maps of the atom-based 

QSAR model are in the form of blue, red, or both color cubes. 

Herein, we considered molecule A (standard) as a reference 

for the prediction of models. In model 3 of molecule A, it was 

clearly observed that the quinoline ring, with substituents at 

C4 (R1-group), C7, and C8 positions and the aryl group (all 

positions except C2), attached to the R4-position represented 

blue color cubes, indicating that electron-withdrawing 

functionalities may favor the activities. However, electron-

withdrawing groups at the hydrogen of the carboxylic group, 

C5, and C6-positions of quinoline rings and the C2-position of 

the aryl ring attached to the R4-position represented the red 

color   maps,   indicating   that  further  electron-withdrawing 

 

 

substituents may disfavor the activity. Also, red cubes around 

the carboxylic group and C7 position of the quinoline ring and 

the C3-position of the aryl ring attached to the R4-position 

indicated that the H-bond donor atom at this position 

disfavored or denoted negative contribution to the activity 

while the H-bond donor atom at the –OH group of carboxylic 

acid group, C8-position of the quinoline ring, and C2-position 

of the aryl ring attached to the R4-position enhanced the 

activity. Hydrophobic groups attached to the quinoline ring 

at N, C5, and C6-positions and the alkyl/aryl group attached 

to the R4-position favored the activity while hydrophobic 

substitutions at other positions of the quinoline ring 

disfavored the activity. A visual representation of the atom-

based QSAR model for reference molecule A is shown in    

Fig. 6. 

      The scatter plots of predicted activity vs. actual activity 

of all three models and the training and test set molecules of 

model 3 for the 3D atom-based QSAR models are shown in 

Fig. 7. 

      Both 3D atom-based and field-based QSAR models 

demonstrated good predictive abilities with good robustness. 

These models may be useful in designing quinoline-based 

DHODH inhibitors for the treatment of various infections. 

 

Pharmacophore Modeling and Analysis 
      A different molecular environment, such as hydrogen, 

atoms, and skeletons, usually becomes an acceptor, donor, 

ionizable, hydrophobic, or aromatic ring and is important for 

designing a pharmacophore model [18-21]. A PHASE tool 

can be used for the generation of H-bond donor (D), H-bond 

acceptor (A), hydrophobic group (H), negatively ionizable 

(N), positively ionizable (P), and aromatic ring (R) features. 

In this study, a five-point pharmacophore model (ARRR_1), 

with one H-bond acceptor and three aromatic rings, was 

generated. All molecules were merged using flexible ligand 

arrangement and classified into two sets, such as active and 

inactive sets, with those molecules having pIC50 > 2.20 being 

considered as active 2-aryl-4-quinoline carboxylic acid 

analogs (92 molecules) and those having pIC50 < 2.20 being 

considered as inactive molecules. A minimum of four and a 

maximum of six pharmacophore features were selected for 

the development of the study hypothesis. The hypothesized 

difference was kept at 0.50 by default. 
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A) QSAR plot of the test set of model 4 B) QSAR plot of the test set of model 5 

  
C) QSAR plot of the training set of model 4 D) QSAR plot of the training set of model 5 

  
E) QSAR plot of model 4 F) QSAR plot of model 5 

Fig. 5. Field-based QSAR model plots of actual vs. predicted pEC50 values of A) QSAR plot of the test set of model 4, B) 

QSAR plot of the test set of model 5, C) QSAR plot of the training set of model 4, D) QSAR plot of the training set of 

model 5, E) QSAR plot of model 4, and F) QSAR plot of model 5. 
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Fig. 6. Visual representation of atom-based PHASE 3D-QSAR model of the reference molecule A: A) electron 

withdrawing, B) H-bond donor, C) hydrophobic effect, and D) other effects. Blue cubes indicate a positive coefficient 

or an increase in activity while red cubes indicate a negative coefficient or a decrease in activity. 

 

  
A) QSAR plot of the training set of model 3 B) QSAR plot of the test set of model 3 

 
C) QSAR plot of model 3 

Fig. 7. 3D atom-based QSAR model plot of actual vs. predicted pEC50 values of A) training set of model-3, B) test set 

of model-3, and C) model-3. 
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      A total of 20 hypotheses were developed, and a top 

hypothesis was selected on the basis of the BEDROC score. 

All merged images of all active molecules were aligned on 

the common pharmacophore hypothesis ARRR_1. All 20 

hypotheses were arranged based on their BEDROC scores, as 

presented in Table 3. 

      ARRR_1 pharmacophore model was selected based on its 

BEDROC score = 0.996 (99.6% accuracy),  survival  score =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.726, and site score = 0.905 for developing 3D-contours 

with all the aligned active molecules. All 2-aryl-4-quinoline 

carboxylic acid analogs were aligned on the selected 

ARRR_1 pharmacophore model to examine whether the 

structural features correlated with the developed ranked 

hypothesis. Here again, reference molecule A was considered 

as the active molecule for the hypothesis ARRR_1 (Fig. 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Different Pharmacophore Hypotheses (Arranged on the Basis of BEDROC score) Generated by PHASE 
 

Hypoth
esis ID 

Hypothesis 
role 

Survival 
score 

Site 
score 

Vector 
score 

Volume 
score 

Selectivity 
score 

Num 
matched 

Inactive 
score 

Adjusted 
score 

BEDRO
C score 

ARRR_
1 

Hypo 
5.726 0.905 0.892 0.738 1.232 91 0 5.726 0.996 

AARR_
1 

Hypo 
5.672 0.922 0.893 0.736 1.163 91 0 5.672 0.996 

ARRR_
2 

Hypo 
5.633 0.825 0.889 0.73 1.23 91 0 5.633 0.996 

AARR_
2 

Hypo 
5.578 0.861 0.879 0.719 1.16 91 0 5.578 0.996 

AARR
R_1 

Hypo 
5.887 0.787 0.888 0.747 1.541 84 0 5.887 0.964 

AARR
R_2 

Hypo 
5.848 0.733 0.905 0.739 1.541 85 0 5.848 0.964 

AAAR
R_1 

Hypo 
5.779 0.786 0.888 0.748 1.433 84 0 5.779 0.964 

AAAR
R_2 

Hypo 
5.74 0.734 0.905 0.74 1.432 85 0 5.74 0.964 

AARR
R_3 

Hypo 
5.687 0.602 0.905 0.715 1.541 84 0 5.687 0.964 

AAAR
R_3 

Hypo 
5.579 0.602 0.905 0.715 1.433 84 0 5.579 0.964 

AARR_
3 

Hypo 
5.453 0.763 0.861 0.746 1.159 84 0 5.453 0.969 

AARR_
4 

Hypo 
5.412 0.704 0.882 0.738 1.159 85 0 5.412 0.968 

AARR
R_4 

Hypo 
5.477 0.469 0.815 0.693 1.56 87 0 5.477 0.963 

AARR
R_5 

Hypo 
5.436 0.428 0.854 0.669 1.56 84 0 5.436 0.962 

AARR_
5 

Hypo 
5.391 0.784 0.856 0.688 1.134 85 0 5.391 0.962 

AAAR
R_4 

Hypo 
5.376 0.468 0.816 0.695 1.457 87 0 5.376 0.963 

AAAR
R_5 

Hypo 
5.334 0.428 0.854 0.67 1.457 84 0 5.334 0.962 

AAAR_
1 

Hypo 
5.304 0.774 0.859 0.706 1.036 85 0 5.304 0.964 

AARR_
6 

Hypo 
5.349 0.806 0.927 0.593 1.098 84 0 5.349 0.961 

AAAR_
2 

Hypo 5.289 0.782 0.935 0.631 1.011 85 0 5.289 0.964 
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Molecular Docking and QikProp ADMET 
Predictions 
      The relationship between DHODH enzyme inhibitors 

and COVID-19 targets. Despite the strenuous effort made 

to develop a vaccine to combat SARS-CoV-2, no effective 

antiviral medication or vaccine has yet been developed to be 

able to prevent or cure COVID-19. Among coronaviruses, 

the primary protease (Mpro, also known as 3CLpro) is a 

desirable therapeutic target. Several effective inhibitors of 

the SARS-CoV-2 3CLpro and the association of their               

crystal structures with the protease have been  identified and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

introduced. The production of DNA, RNA, phospholipids, 

and glycoproteins, which is necessary for both cell survival 

and proliferation, is made possible by the use of pyrimidines 

as key building components. Human DHODH is a flavin-

dependent mitochondrial enzyme that catalyzes the oxidation 

of dihydroorotate to orotate, the fourth and rate-limiting step 

in the de novo production of pyrimidine-based nucleotides. 

HDHODH is a member of the class 2 DHODH family. As a 

result, DHODH is a desirable therapeutic target for a range 

of infections, such as cancer and autoimmune disorders. 

Recently, a study proposed the possible correlation between  

  
A) Pharmacophore model B) Pharmacophore model properties 

 

 
C) Pharmacophore model with the ref. molecule A 

Fig. 8. A six-point pharmacophore model (ARRR_1) generated by PHASE.  
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COVID-19 and inhibitors of hDHODH [22]. Accordingly, in 

this study, we investigated the current dataset of DHODH 

inhibitors against COVID-19 targets.  

      There are about 178 protein structures of PDBs (PDB; 

http://www.rcsb.org/pdb/home/home.do) associated with 

DHODH enzymes, which, themselves, are associated with 

more than 16 different organisms to the best of our 

understanding. All these structures are determined by X-ray 

crystallography, either in complex with substrates, products, 

or inhibitors or in the hollow form for both native and mutant 

proteins. Selective DHODH inhibitors against infective 

microorganisms may be useful for the development of drugs 

against different infections.  

      In this study, dataset inhibitors were docked against 

SARS-CoV propane-like protease inhibitor, PLpro (PDB: 

3MJ5), to evaluate the effectiveness of dataset molecules for 

any probable anti-viral activity  against  COVID-19 (Fig. 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The strength of the 1:1 complex was determined using the 

docking score. The receptor parameters and docking scores 

of the top five ligands are provided in Tables S10 and S11. 

Moreover, in silico analysis of the best top hits retained good 

pharmacokinetic profiles. 

      All dataset DHODH inhibitors did not exhibit effective 

binding against SARS-CoV-2 propane-like protease target 

(3MJ5). While some of the DHODH inhibitors, including 

P19, P14, P39, P18, P45, P40, P35, P48, P37, P49, P30, and 

P42) were found to bind effectively to the target with weak 

interactions (lower docking scores), the remaining inhibitors 

docked with the absorption of energy (positive docking 

scores). It was concluded that the molecules found to have 

weak binding may not act as anti-viral agents against the 

receptors of SARS-CoV-2. However, with the help of the 

developed QSAR models, the top best-bound molecules were 

considered  for  designing  and  synthesizing  newer  sets  of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
P14 (3D) P18 (2D) P19 (3D) 

 
  

P39 (3D) P45 (2D) P19 (2D) 

Fig. 9. 2D/3D binding images of the best selected docked ligands against PDB: 3MJ5. 
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molecules acting on both targets. These new sets of 

molecules may emerge as dual inhibitors of DHODH and 

SARS-Cov-2. 

 
DISCUSSION 
 

      The blue occlusions around the substituents at the C4 (R1-

group), C7, and C8 positions of the quinoline ring and the aryl 

group (all positions except C2) attached to the R4-position 

indicate that electron-withdrawing functionalities may favor 

the activities while the H-bond donor group at the –OH group 

of carboxylic acid group, C8-position of quinoline ring, and 

C2-position of aryl ring attached to the R4-position may 

enhance the activity. Moreover, the hydrophobic groups 

attached to the quinoline ring at N, C5, and C6-positions and 

the alkyl/aryl group attached to the R4-position may also 

favor the activity. On the other hand, the electron-

withdrawing groups at the hydrogen of the carboxylic group, 

C5, and C6-positions of the quinoline rings, and C2-position 

of the aryl ring attached to the R4-position, H-bond donor 

group at the carboxylic group and C7 position of the quinoline 

ring and C3-position of the aryl ring attached to the R4-

position, and hydrophobic substitutions at other positions of 

the quinoline ring were marked with the red color in the 

maps, indicating that further electron-withdrawing 

substituents may disfavor the activity. 

      In the field-based 3D-QSAR model, a sterically hindered 

group on the R4-position was attached to the aryl rings, 

suggesting that the hydrophobic effect may marginally affect 

the activity at the maximum position and enhance it. 

However, H-bond donor and acceptor groups attached to the 

side chain at R2-groups (C3-position), CO-position at R1, and 

aryl substitutions at R4-position changed the value of activity 

(i.e., bioactivity), which depends on the nature of H-donor 

and acceptor atoms. On the other hand, the steric hindrance 

of other groups did not affect the DHODH inhibition activity. 

Only the balance of the other electronic substituent properties 

is required to be maintained. The electrostatic effect at the R2, 

R1, R5, and 4-position of the aryl ring at R4 showed a negative 

contribution while the C3 and C5 positions of the aryl ring at 

the R4-position, R1, and R3 atoms showed a positive 

contribution to the bioactivity. KPLS-based analysis 

suggested the consideration of the dendritic fingerprint 

descriptor for the best performance. 

 

 
CONCLUSIONS 
 

      In summary, in the present, statistically robust and 

interpretable 2D- and 3D-QSAR models were developed 

based on a dataset of 92 molecules of biologically active 2-

aryl-4-quinoline carboxylic acid analogs, reported as 

DHODH inhibitors in the literature. Based on the QSAR 

analysis, it was found that the generated 4-point 

pharmacophore model (ARRR_1), with one H-bond acceptor 

and three aromatic rings, was crucial for retaining the 

activities of 2-aryl-4-quinoline carboxylic acid analogs as 

DHODH inhibitors.  

      Thus, the developed QSAR models are hoped to help 

researchers to better design 2-aryl-4-quinoline carboxylic 

acid analogs as DHODH inhibitors. Furthermore, based on 

the correlation between DHODH inhibitors and some 

COVID-19 targets, we suggest that the dataset hits P19, P14, 

P39, P18, and P45 can be repurposed and be used as plausible 

SARS-CoV-2 inhibitors.  
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