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      Tuberculosis (TB) is one of the top ten causes of mortality worldwide, necessitating the discovery of new molecules with potential anti-

tuberculosis activity. In this study, Pretomanid derivatives as potent anti-TB agents were collected from the literature to generate a 3D-QSAR 

model and conduct molecular docking. The 3D-QSAR model was successfully generated with a high regression coefficient R² = 0.98 and an 

excellent cross-validated determination coefficient Q2
cv = 0.51 for the training set. Furthermore, the model developed showed good predictive 

ability, with a high predictive value Q2 = 0.75 for the test set. The generated 3D contour cubes were applied to find the structural properties 

necessary to inhibit Deazaflavin-dependent nitroreductase. Then, the results were used to discover novel molecules with a potential anti-

tuberculosis activity using the structure-based virtual screening. Based on successful results obtained by virtual screening, twelve compounds 

were selected as potential inhibitors of the Ddn with highly predicted activities, binding interactions, and acceptable ADME properties. 
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INTRODUCTION 
 

      Tuberculosis (TB) is caused by the bacillus 

Mycobacterium tuberculosis (Mtb). It remains one of the 

world's leading causes of death due to its high mortality and 

morbidity rates in recent times [1-3], particularly in countries 

with low resources, including regions with high poverty [4]. 

In 2021, the World Health Organization (WHO) reported 

about 10 million TB cases and an estimated 1.2 million 

deaths globally [5]. The WHO reaffirmed its commitment to 

ending the TB epidemic by 2030, as per the Sustainable 

Development Goals (SDGs) [6]. However, the development 

of multidrug-resistant tuberculosis (MDR-TB), extensively 

drug-resistant (XDR-TB), and totally drug-resistant 

tuberculosis (TDR-TB) has made the situation worse recently 

[7].  Tuberculosis    infections    by    drug-sensitive    strains  
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traditionally treated by drugs target cell wall synthesis or 

inhibit bacterial growth resulting in the selection of mutant 

strains that may develop drug resistance [8]. Therefore, it is 

necessary to identify new therapeutic targets for TB 

treatment and new drugs that could act on them. 

      Pretomanid (PA-824, see in Fig. 1) is a new class of 

tuberculosis drug (bicyclic nitroimidazole) that was approved 

by the Food and Drug Administration (FDA) in 2019 for the 

treatment of multidrug-resistant (MDR-TB) in combination 

with bedaquiline and linezolid drugs, which are still in phase 

III clinical evaluation [9,10]. 

      The main objective of this research is to design and 

predict the activity of new hit compounds as potential 

inhibitors of Deazaflavin-dependent nitroreductase (Ddn) 

against Mycobacterium tuberculosis using in silico screening 

approaches. 

      To achieve this aim, a molecular docking and a 3D 

quantitative structure-activity relationship model study                   

were performed on a series of Pretomanid  derivatives as TB  
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Fig. 1. Chemical structure of Pretomanid. 

 

 

inhibitors to identify the structural features important for Ddn 

enzyme inhibition. These results were then used to discover 

new molecules with potential anti-tuberculosis activity using 

virtual screening. First, the ZINC [11] database was 

subjected to the Lipinski rule of five for identifying drug-like 

properties [12]. The resultant molecules were virtually 

screened using molecular docking to find the most potent 

inhibitors. Finally, the top hits compounds were then 

subjected to ADME to compare the drug-like properties with 

those of standard medicaments [13,14]. 

 

MATERIALS AND METHODS 
 
Dataset  
      A dataset of 118 Pretomanid derivatives as TB inhibitors 

for this work was selected from the literature [15]. The 

minimum inhibitory concentration (MIC) values were 

converted to a logarithmic scale [pMIC = -log(MIC × 10-6)] 

(Table 1, Table 2) to reduce data skewness for the QSAR 

study [4]. The dataset was divided into two sets, ninety-two 

(92) compounds were randomly chosen as the training set for 

model construction, while the remaining 26 compounds were 

selected as the test set for external model validation [16]. 

 

Ligand Preparation 
      All the structures of Pretomanid derivatives are sketched 

using Chem draw ultra and imported to Maestro version 

9.9.013 (Schrödinger) for energy minimization and 

generation of 3D structures using LigPrep module in Maestro 

[17]. The possible ionization and tautomer were generated at 

a pH of 7.0 ± 2.0, and energy minimizations were performed 

using the OPLS-2005 force field [18]. 

 

 

Molecular Docking  
      The crystal structure of Deazaflavin-dependent 

nitroreductase (Ddn) from Mycobacterium tuberculosis 

(PDB Id: 3R5W, resolution of 1.79 Å) was obtained from the 

Protein Data Bank website (www.rcsb.org) [19] and 

processed using protein preparation wizard module in 

Schrödinger [20]. All the water molecules were removed, 

hydrogen atoms were added, and the OPLS 2005 force field 

with a root mean square deviation (RMSD) value of 0.30 Å 

was used for optimization and minimization of the protein 

[21]. After the preparation of the protein, the grid box for 

3R5W was generated via receptor grid generation [22]. The 

molecular docking studies of the ligands were carried out 

using Glide extra-precision (XP) mode to identify their 

docking score and binding mode into the active site of the 

Ddn enzyme [23]. 

 

Building 3D-QSAR Model 
      The PHASE (version 6.1) module in Schrödinger was 

used to generate the atom-based 3D-QSAR model to explore 

the relationship between the structure of ligands and their 

biological activities [24,25]. All 118 compounds were split 

into two sets, a training set (92 compounds) and a test set                  

(26 compounds), by using the random selection method [26] 

The 3D-QSAR model was generated with a maximum PLS 

factor of N/5 (N is the number of ligands present in the 

training set), hence an optimal of five of PLS factor was 

selected with a grid spacing of 1 Å. The best QSAR model 

was then validated by predicting the activity of the external 

dataset [27,28]. Compound 28 was selected as a reference 

compound to visualize the contour maps due to its stronger 

inhibitory activity. 

 

Virtual Screening 
      The virtual screening of ZINC database was performed 

with the aim of discovering novel hits with potential anti-

tuberculosis activity using Virtual Screening Workflow 

(VSW) module of Schrodinger, as shown in Fig. 2. The ZINC 

database was downloaded from the official site 

(http://zinc15.docking.org/) [11,29,30] and subjected to 

Lipinski’s Rule of five (MW < 500, HBD < 5, HBA < 10, 

logP <  5) as the first filter for identifying drug-like molecules 

[31]. 
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Table 1. Chemical Structures and MIC (μM) Values of Pretomanid Derivatives 1-118 [15] 

 

 

Compounds MIC 

(μM) 

Structure Compounds MIC 

(μM) 

Structure 

Link aza R Link aza R 

1 0.5 - - - 18 0.08 p 2 4-CN 

2 0.03 p - CF3 19 0.14 p 2 3-F 

3 0.035 p - OCF3 20 0.035 p 2 4-F 

4 5.2 o 3 4-OCH3 21 0.08 p 2 4-OCF2H 

5 2.7 o 3 4-OCH2Ph 22 0.13 p 2 4-OCH3 

6 1.4 m 2 - 23 0.51 p 3 - 

7 0.32 m 2 4-CF3 24 0.03 p 3 4-CF3 

8 0.21 m 2 4-OCF2H 25 0.20 p 3 4-CN 

9 1.4 m 3 - 26 0.095 p 3 4-F 

10 0.47 m 3 4-CF3 27 0.55 p 3 5-F 

11 0.37 m 3 4-F 28 2.6 p 3 4-NH2 

12 0.40 m 3 4-OCH3 29 0.045 p 3 4-OCF2H 

13 0.07 m 3 4-OCH2Ph 30 0.045 p 3 4-OCH3 

14 1.4 m 4 - 31 0.04 p 3 4-OCH2Ph 

15 0.21 p 2 - 32 0.50 p 4 - 

16 0.06 p 2 4-CF3 33 0.56 p 4 2-F 

17 0.025 p 2 4-CF3, 6-Cl 34 0.23 p 4 3-F 

 

 
 

35 0.29 m 2’ 4-CF3 66 0.065 p 2’ 4-OCF3 

36 0.48 m 2’ 4-CN 67 0.02 p 2’ 4-OCF2H 

37 0.30 m 2’ 4-F 68 0.17 p 2’ 3-F, 4-OCH3 

38 0.16 m 2’ 4-OCF3 69 0.14 p 2’ 2-Cl, 4-OCF3 

39 0.17 m 2’ 4-OCF2H 70 0.04 p 2’ 3-Cl, 4-OCF3 

40 0.30 m 2’ 3-F, 4-OCH3 71 0.06 p 2’ 2-F, 4-OCF3 

41 0.71 m 2’ 3-aza, 4-OCH3 72 0.05 p 2’ 3-F, 4-OCF3 

42 0.075 m 4’ 4-CF3 73 0.06 p 2’ 3-OCF3, 4-Cl 

43 0.38 m 4’ 4-CN 74 1.4 p 2’ 2-aza, 3-F 

44 0.17 m 4’ 4-F 75 0.83 p 2’ 2-aza, 4-CF3 

45 0.035 m 4’ 4-OCF3 76 0.24 p 2’ 3-aza, 4-CF3 
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  Table 1. Continued 
 

46 0.055 m 4’ 4-OCF2H 77 0.49 p 2’ 3-aza, 4-F 
47 0.34 m 4’ 3-F, 4-OCH3 78 2.6 p 2’ 3-aza, 5-F 
48 1.3 m 4’ 3-aza, 4-OCH3 79 0.36 p 2’ 3-aza, 3-OCH3 
49 0.15 m 5’ 4-CF3 80 3.2 p 2’ 4-aza, 2-F 
50 0.69 m 5’ 4-CN 81 1.7 p 2’ 4-aza, 3-F 
51 0.31 m 5’ 4-F 82 0.053 p 3’ 4-CF3 
52 0.17 m 5’ 4-OCF3 83 0.18 p 3’ 4-CN 
53 0.53 m 5’ 4-OCF2H 84 0.06 p 3’ 4-F 
54 0.91 m 5’ 3-F, 4-OCH3 85 0.05 p 3’ 4-OCF3 
55 2.8 m 5’ 3-aza, 4-OCH3 86 0.02 p 3’ 4-OCF2H 
56 0.88 m 6’ 4-CF3 87 0.09 p 3’ 3-F, 4-OCH3 
57 2.1 m 6’ 4-CN 88 0.03 p 3’ 2-Cl, 4-OCF3 
58 0.46 m 6’ 4-F 89 0.017 p 3’ 3-Cl, 4-OCF3 
59 0.76 m 6’ 4-OCF3 90 0.047 p 3’ 2-F, 4-OCF3 
60 0.67 m 6’ 4-OCF2H 91 0.025 p 3’ 3-F, 4-OCF3 
61 2.3 m 6’ 3-F, 4-OCH3 92 0.18 p 3’ 3-OCF3, 4-Cl 
62 3.8 m 6’ 3-aza, 4-OCH3 93 0.19 p 3’ 3-aza, 4-CF3 
63 0.04 p 2’ 4-CF3 94 0.37 p 3’ 3-aza, 4-F 
64 0.18 p 2’ 4-CN 95 0.24 p 3’ 3-aza, 4-OCH3 
65 0.13 p 2’ 4-F   

 
 

96 0.06  2’,3’ 4-CF3 108 0.33  2’, 5’ 3-aza, 4-CF3 
97 0.36  2’, 

3’ 
4-CN 109 0.06  2’, 6’ 4-CF3 

98 0.19  2’, 
3’ 

4-F 110 0.13  2’, 6’ 4-F 

99 0.075  2’, 
3’ 

4-OCF3 111 0.11  2’, 6’ 4-OCF3 

100 0.17  2’, 
3’ 

4-OCF2H 112 0.12  2’, 6’ 4-OCF2H 

101 0.25  2’, 
3’ 

3-F, 4-OCH3 113 0.28  2’, 6’ 3-aza, 4-CF3 

102 0.55  2’, 
3’ 

3-aza, 4-CF3 114 0.025  3’, 5’ 4-CF3 

103 0.72  2’, 
3’ 

3-aza, 4-OCH3 115 0.11  3’, 5’ 4-F 

104 0.08  2’, 
5’ 

4-CF3 116 0.027  3’, 5’ 4-OCF3 

105 0.085  2’, 
5’ 

4-F 117 0.13  3’, 5’ 4-OCF2H 

106 0.023  2’, 
5’ 

4-OCF3 118 0.16  3’, 5’ 3-aza, 4-CF3 

107 0.20  2’, 
5’ 

4-OCF2H      

O: Ortho                 m: Meta                  P: Para 

 
732 



 

 

 

In Silico Approach for Developing New Anti-Tuberculosis Drug Candidates/Phys. Chem. Res., Vol. 12, No. 3, 729-743, September 2024. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      The resulting molecules from the first stage of filtration 

were screened by using a second filter, i.e. molecular docking 

(HTVS, SP, and XP) to find the most potent inhibitors [32]. 

The retrieved molecules were docked into the active site of 

the Ddn enzyme using the high-throughput virtual Screening 

(HTVS), and the  best-scoring  molecules 5%  were selected  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and passed to the standard precision (SP) method. Again, 

5%of the top-scoring molecules from Glide SP were selected 

and subjected to the extra precision (XP) method. Finally, 70 

hits molecules selected with a glide score > -13.34 were then 

submitted to PHASE to predict the activity by using the 

developed 3D-QSAR model. 

Table 2. PLS Statistics Parameters 

 

PLS SD R² R²CV R2
Scramble Stability F P RMSE Q² Pearson-r 

1 0.45 0.47 0.29 0.40 0.95 80.8 3.64e-14 0.38 0.37 0.64 

2 0.27 0.81 0.44 0.65 0.72 189.8 7.96e-33 0.24 0.74 0.86 

3 0.21 0.89 0.50 0.78 0.69 241.7 2.33e-42 0.25 0.73 0.85 

4 0.16 0.93 0.51 0.86 0.65 309.3 1.53e-50 0.26 0.71 0.85 

5 0.12 0.98 0.51 0.91 0.61 463.9 1.3e-60 0.24 0.75 0.87 

PLS: optimal number of components; SD: standard deviation of the regression; R2: regression coefficient; F: variance 

ratio; P: significance level of variance ratio; Q2: cross-validated correlation coefficient for the test set; RMSE: root-mean-

square error in the test set predictions; Pearson-r, correlation between the predicted and observed activity for the test set. 

 

 
Fig. 2. Workflow for Virtual screening.  
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ADME Prediction of Hits 
      The resulting molecules from the molecular docking were 

predicted for the Absorption, Distribution, Metabolism, and 

Excretion (ADME) properties using the QikProp module of 

Schrodinger [33,34]. The analysis provides significant 

physicochemical properties such as MW, HBD, HBA, LogP, 

QPlogPw, QPlogS, QPPCaco, PHOA, QPlogPw, %HOA, 

QPlogKha, #rotor, QPPMDCK [35,36]. 

 
RESULTS AND DISCUSSION 
 
Docking Analysis of Pretomanid Derivatives 
      The crystal structure of Ddn from Mycobacterium 

tuberculosis was retrieved and subjected to a molecular 

docking approach  using  the  Glide (version 6.2)  module in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schrodinger to explore the interactions between the target 

protein and the ligand [37]. The docking studies in the active 

site of Ddn revealed that Pretomanid derivatives interact with 

many interactions, such as pi-pi stacking, hydrogen bonds, 

salt bridge, and hydrophobic. For all ligands, as observed in 

Fig. 3, nitroimidazole formed a salt bridge interaction with 

LYS79 and LYS103. In addition, its pyrimidine ring 

observed interaction with ASN62 by hydrogen bond and a 

hydrophobic interaction Pi–Pi stacking with TRP88 and 

TYR65. The NO2 groups showed hydrogen bond interactions 

with ASN62 and SER78. These interactions are essential for 

the inhibitions of Deazaflavin-dependent nitroreductase 

(Ddn). The interaction of compounds 28, 55, 14, and 1 in the 

active site of Ddn is shown in Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 3. 2D-Interaction of compounds 28, 55, 14, and 1 in the active site of Ddn (PDB: 3R5W). 
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3D-QSAR Model Analysis 
      The atom-based 3D-quantitative structure-activity 

relationship (QSAR) model was developed successfully, with 

five PLS factors having an excellent regression coefficient     

R² = 0.98 (R² > 0.6), a good cross-validated determination 

coefficient Q2cv = 0.51 (Q2
cv > 0.5) for the internal validation  

of training set. The model was also validated by the high 

predictive value for the external validation of test set                

Q2 = 0.75 (Q2 > 0.6), suggesting that the model is statistically 

significant and has a mighty predictive power. In addition, a 

large variance ratio (F) value of 463.9 indicates a more 

statistically significant regression, Pearson-r of 0.87, and a 

smaller P value (1.3e-60) with stability of the generated 

model 0.61 on a scale of 1 indicating a greater degree of 

confidence on the model. A smaller standard  deviation (SD) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

value of 0.12 and root mean square error (RMSE) value of 

0.24 indicate that the data used to generate the model are 

better for QSAR analysis. A summary of the PLS statistics 

parameters of the model is presented in Table 2. Actual and 

predicted activities (pMIC), and residual values of the dataset 

are presented in Table 4. The graphs of actual versus 

predicted activities (pMIC) of training and test set molecules 

are presented in Fig. 4. 

      The contributions of a hydrogen bond donor, 

hydrophobic group, negative ionic, positive ionic, and 

electron-withdrawing group were found to be 0.4%, 42.3%, 

10.4%, 10.4%, and 36.5%, respectively, which indicates that 

the hydrophobic and electron-withdrawing groups have the 

highest contribution in this model (Table 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Field Contribution of the 3D-QSAR Model 

 

PLS Field Contribution (%) 

H-bond donor Hydrophobic Negative ionic Positive ionic Electron-withdrawing 

1 0.3 51.0 07.7 07.9 33.1 

2 0.3 46.1 09.0 09.5 35.0 

3 0.3 44.3 09.6 09.9 35.8 

4 0.3 42.5 10.0 10.3 36.6 

5 0.4 42.3 10.5 10.4 36.5 

 
 

 
Fig. 4. Graphs of actual vs. predicted activities (pMIC) of training and test set compounds. 
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3D-QSAR Contour Maps Analysis 
      To analyze 3D-QSAR results, the PHASE module of 

Schrödinger was used to generate the atom-based contour 

maps, shown in Fig. 5, with the most active compound 

(compound 28) as a reference. The generated 3D contour 

maps showed the pharmacophoric features important of 

compounds for inhibiting Deazaflavin-dependent 

nitroreductase (Ddn), including hydrogen bond donor, 

hydrophobic, negative/positive ionic, and electron-

withdrawing features. Blue cubes indicate favorable regions 

and red cubes indicate unfavorable regions for Ddn inhibitor 

activity [38]. In the hydrogen bond donor effect, red cubes 

are observed only near the NH2 group of ligands. In the 

hydrophobic effect, the blue cubes are presented around the 

–NO2 group of imidazole rings. Moreover, the blue cubes are 

observed near the NH2 ring group, indicating these positions 

favored the Ddn inhibitory activity. The negative and positive 

ionic showed blue cubes near the NO2 group of the 

compounds. In the electron-withdrawing effect, the blue 

cubes are observed in the NO2 group of imidazole rings. 

Moreover,  blue  cubes  are  observed in  the  NH2  group of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

compounds. 

 

Virtual Screening analysis 
      The molecular docking analysis revealed that top hits 

molecules interact with active site residues of Deazaflavin-

dependent nitroreductase (Ddn) analogously to Pretomanid 

analogs. The docking studies of the top hits molecules 

showed that the hydrogen bond acceptor interactions were 

observed with TRP88, SER78, LYS79, and ASN62 amino 

acid residues, and hydrogen bond donor interaction was also 

observed with ALA76 residue. While the pi-pi interactions 

occurred with TRP88 and TYR65 residues. The binding 

energy of the virtual screening hits, as shown in Table 5 

(range: -9.95 to -13.43 kcal mol-1), was better than the 

binding energy of the reference compound (compound 28; 

XP-Glide = -9.95 kcal mol-1), which indicates that the virtual 

screening hits had strong binding interactions for the 

inhibition of Ddn. The interactions of the top hits molecules 

into site active Ddn are presented in Fig. 6, and docking 

values, binding interactions, and predicted activity 

(pMICpred) are depicted in Table 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. Representation of the contour maps with the most active compounds (28) using the 3D-QSAR model. 
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Table 4. Actual pMIC (Exp), Predicted pMIC(Pred), and Residual Values of Dataset 

 
Compounds  pMIC(Exp) pMIC(Pred) Residual Compounds pMIC(Exp) pMIC(Pred) Residual 

1  6.30 6.23 -0.07 60 6.17 6.27 0.09 
2 7.52 7.59 0.06 61 5.64 5.75 0.11 
3* 7.46 7.02 -0.39 62 5.42 5.35 -0.07 
4 5.28 5.27 -0.01 63 7.40 7.51 0.11 
5 5.57 5.57 -0.05 64 6.75 6.69 -0.05 
6 5.85 5.94 0.09 65 6.89 6.78 -0.11 
7 6.50 6.47 -0.02 66* 7.19 6.92 -0.27 
8 6.68 6.75 0.08 67 7.70 7.74 0.04 
9 5.85 5.93 0.08 68 6.77 6.74 -0.03 
10 6.33 6.37 0.04 69* 6.85 7.22 0.37 
11 6.43 6.35 -0.08 70 7.40 7.25 -0.15 
12 6.40 6.32 -0.08 71 7.22 7.16 -0.06 
13 7.15 7.09 -0.06 72 7.30 7.19 -0.11 
14 5.85 5.76 -0.09 73 7.22 7.22 -0.00 
15* 6.68 6.61 -0.07 74 5.85 6.27 0.42 
16* 7.22 7.55 0.33 75 6.08 6.18 0.10 
17 7.60 7.46 -0.15 76 6.62 6.67 0.05 
18 7.10 7.22 0.12 77 6.31 6.43 0.12 
19* 6.85 6.60 -0.26 78* 5.59 5.95 0.37 
20 7.46 7.49 0.03 79 6.44 6.40 -0.04 
21 7.10 6.75 -0.34 80 5.50 5.56 0.06 
22 6.88 6.90 0.10 81 5.77 5.74 -0.03 
23 6.29 6.38 0.09 82 7.28 7.27 -0.01 
24 7.52 7.47 -0.05 83* 6.75 6.60 -0.14 
25 6.70 6.74 0.04 84 7.22 7.20 -0.02 
26 7.02 6.95 -0.07 85* 7.30 7.18 -0.12 
27 6.26 6.39 0.13 86 7.70 7.58 -0.12 
28 5.58 5.52 -0.06 87* 7.05 7.41 0.36 
29 7.35 7.28 -0.06 88 7.52 7.52 -0.00 
30 7.35 7.22 -0.13 89* 7.77 7.71 -0.06 
31 7.40 7.25 -0.14 90 7.33 7.41 0.08 
32* 6.30 6.50 0.20 91 7.60 7.85 0.25 
33 6.25 6.04 -0.21 92 6.75 6.45 -0.29 
34* 6.64 6.79 0.15 93* 6.72 7.01 0.28 
35 6.54 6.40 -0.14 94* 6.43 6.35 -0.08 
36* 6.32 6.31 -0.01 95 6.62 6.70 0.08 
37 6.52 6.52 0.00 96 7.22 7.13 -0.09 
38* 6.79 6.44 -0.35 97 6.44 6.41 -0.03 
39 6.77 7.03 0.26 98 6.72 6.50 -0.22 
40 6.52 6.42 -0.10 99 7.13 7.38 0.25 
41 6.15 6.17 0.02 100 6.77 6.76 -0.01 
42 7.13 7.11 -0.02 101 6.60 6.64 0.04 
43 6.42 6.38 -0.01 102 6.26 6.26 -0.00 
44 6.77 6.65 -0.12 103 6.14 6.30 0.15 
45 7.46 7.50 0.05 104*                   7.10 7.47 0.37 
46 7.26 7.24 -0.02 105                   7.07 7.04 -0.03 
47 6.47 6.36 -0.11 106                   7.64 7.70 0.06 
48 5.89 5.83 -0.06 107*                   6.70 6.86 0.16 
49 6.82 6.89 0.06 108                   6.48 6.65 0.17 
50 6.16 6.25 0.08 109*                   7.22 7.09 -0.13 
51* 6.51 6.45 -0.06 110                   6.89 6.98 0.09 
52 6.77 6.80 0.03 111* 6.96 6.79 -0.17 
53 6.28 6.27 -0.01 112 6.92 6.94 0.02 
54 6.04 5.73 0.18 113* 6.55 6.93 0.38 
55 5.55 5.59 0.04 114 7.60 7.47 -0.14 
56 6.06 6.02 -0.04 115 6.69 7.04 0.08 
57 5.69 5.73 0.05 116* 7.57 7.41 -0.16 
58* 6.34 6.40 0.06 117 6.88 6.87 -0.01 
59* 6.12 6.28 0.16 118 6.80 6.65 -0.15 
 *Test set 
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Fig. 6. 2D-interactions and 3D-interactions of the top hits in the site active of Dnd (PDB: 3R5W). 
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ADME Prediction of Hits 
      ADME properties values of the top hits compounds were 

calculated using Qikprop and found to be within the 

acceptable range, which indicates the best drug-like 

compounds and pharmacokinetic characteristics (Table 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
CONCLUSION  
 

      In the current research, the 3D-quantitative structure-

activity relationship (QSAR) model combined with 

molecular  docking  was  conducted on  a  series  of  PA-824  

Table 5. Docking Values, Binding Interactions, and Predicted Activity PMICpred of the Top Hits Molecules 
 

Hits XP-Score Glide E-model MMGBSA Interacting residues (length in A°) PMICpred 

M 1 -13.34 -71.28 -59.09 HBA = ASN62 (2.36), LYS79 (1.77), TYR65 (1.77), 
TYR133 (2.37); HBD = ALA76 (1.89) VAL46 
(1.98); Pi-Pi = TRP88 (4.91) 

5.62 

M 2 -12.84 -81.98 -51.76 HBA = SER78 (1.94), LYS79 (1.80), TYR65 (1.76), 
TYR133 (2.27), TRP88 (2.00); HBD = ALA76 
(1.99); Pi-Pi = TRP88 (5.00) 

5.90 

M 3 -11.65 -77.52 -64.93 HBA = TRP88 (1.81), LYS79 (1.85), TYR65(2.18), 
TYR133 (1.87); HBD = ALA76 (1.78); Pi-Pi = 
TYR65 (5.45) 

5.98 

M 4 -10.76 -72.80 -45.50 HBA = ASN62 (2.54), LYS79 (1.80), TYR133 
(1.88), TYR65 (2.00), TRP88 (2.60); HBD = ALA76 
(2.09) 

5.99 

M 5 -10.75 -69.39 -50.90 HBA = SER78 (2.41), LYS79 (2.13), TYR65 (2.19), 
VAL46 (2.52); HBD = ALA76 (2.70); Pi-Pi = 
TYR65 (5.28) 

6.50 

M 6 -10.68 -80.97 -54.24 HBA = ASN62 (1.82), LYS79 (1.79), TYR133 
(2.03), TYR65 (2.02), TRP88 (2.12); HBD = ALA76 
(2.14); Pi-Pi = TRP88 (5.17) 

6.01 

M 7 -10.62 -62.33 -47.11 HBA = ASN62 (1.80), LYS79 (1.78), SER78 (2.44), 
TYR65 (2.09); Pi-Pi = TYR65 (5.08); Pi-cation = 
LYS103 (6.32) 

6.13 

M 8 -10.47 -70.99 -52.50 HBA = TRP88 (2.00), LYS79 (1.89), TYR65 (2.18), 
TYR133 (1.77); HBD = ALA76 (1.73); pi-pi = 
TYR65 (5.28) 

6.26 

M 9 -10.45 -81.40 -53.02 HBA = ASN62 (1.97), TRP88 (1.78), LYS79 (2.66), 
TYR133 (1.70); HBD = ALA76 (1.80); pi-pi = 
TYR65 (5.02) 

5.90 

M 10 -10.40 -61.83 -60.29 HBA = SER78 (2.54), LYS79 (2.07), TYR65 (2.18); 
HBD = ALA76 (2.06); pi-pi = TYR65 (5.20) 

6.30 

M 11 -10.31 -78.29 -58.25 HBA = SER78 (2.23), LYS79 (2.37), VAL46 (2.65), 
LYS133 (1.83), LYS103 (2.25); HBD = ALA76 
(1.38, 1.68); Pi-Pi = TYR65(5.49 ). 

6.43 

M 12 -9.95 -66.76 -56.46 HBA = TRP88 (2.01), LYS79 (2.59), TYR65 (2.05), 
TYR133 (1.97); HBD = ALA76 (1.67); Pi-cation = 
LYS103 (6.42) 

6.19 
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derivatives as Ddn inhibitors. The docking analysis showed 

better interactions of the dataset with amino acid residues 

such as TRP88, ASN62, LYS79, TYR65, and TYR133. The 

3D-QSAR model showed an excellent correlation coefficient 

(R2 = 0.98), and cross-validation coefficient (Q2
cv = 0.51) 

with small RMSE (0.24) and SD (0.12) at 5 factors PLS level. 

The good predictive power (Q2 = 0.75) of this model was 

validated by a test set. Finally, twelve new hit compounds as 

potential inhibitors of the Ddn enzyme were identified from 

the ZINC database by in silico screening approaches. 
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