Does One-third Scheme of PBE0 Functional Dominate Over PBE0 for Electronic Properties of Transition Metal Compounds?

Document Type: Regular Article

Author

Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran

Abstract

The one-third paradigm of PBE0 density functional, PBE0-1/3, has shown to be a successful method for various properties. In this paper, the applicability of PBE0-1/3 is put into broader perspective for transition metals chemistry. As a comparative study, the performance of PBE0 and PBE0-1/3 has been assessed for geometries and vibrational frequencies of some transition metal hydrides and transition metal containing molecules, and static dipole polarizabilities and dipole moments for transition metal halides. The numerical results show that although PBE0-1/3 performs better than the parent PBE0 for response properties of small molecules, it does not approach the quality of PBE0 for structural parameters. Overall, the results of this investigation suggest that there is no real incentive to use PBE0-1/3 in place of PBE0 for calculations involving transition metals. However, it remains challenging to develop a generally density functional resolving all the qualitative failures of previous approximations at a reasonable computational cost.

Graphical Abstract

Does One-third Scheme of PBE0 Functional Dominate Over PBE0 for Electronic Properties of Transition Metal Compounds?

Keywords

Main Subjects


[1] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864.

[2] W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133.

[3] R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.

[4] A.D. Becke, J. Chem. Phys. 98 (1993) 1372.

[5] J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105 (1996) 9982.

[6] C. Adamo, V. Barone, J. Chem. Phys. 110 (1999) 6158.

[7] M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110 (1999) 5029.

[8] I. Ciofini, C. Adamo, V. Barone, J. Chem. Phys. 121 (2004) 6710.

[9] M.P. Waller, H. Braun, N. Hojdis, M. Bühl, J. Chem. Theory Comput. 3 (2007) 2234.

[10] C. Zhang, D. Donadio, F. Gygi, G. Galli, J. Chem. Theory Comput. 7 (2011) 1443.

[11] M. Alipour, J. Phys. Chem. A 117 (2013) 2884.

[12] M. Alipour, J. Phys. Chem. A 117 (2013) 4506.

[13] P. Cortona, J. Chem. Phys. 136 (2012) 086101.

[14] C.A. Guido, E. Brémond, C. Adamo, P. Cortona, J. Chem. Phys. 138 (2013) 021104.

[15] V. Barone, C. Adamo, Int. J. Quantum Chem. 61 (1997) 443.

[16] J. Shirley, C. Scurlock, T. Steimle, J. Chem. Phys. 93 (1990) 8580.

[17] T. Okabayashi, E. Yamazaki, T. Honda, M. Tanimoto, J. Mol. Spectrosc. 209 (2001) 66.

[18] B. Simard, A.M. James, P.A. Hackett, J. Chem. Phys. 96 (1992) 2565.

[19] K.P.R. Nair, J. Hoeft, J. Phys. B: At. Mol. Phys. 17(1984) 735. [20] M.J. Frisch, J.A. Pople, J.S. Binkley, J. Chem. Phys. 80 (1984) 3265.

[21] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72 (1980) 650.

[22] T.H. Dunning Jr., J. Chem. Phys. 90 (1989) 1007.

[23] D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 98 (1993) 1358.

[24] D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 100 (1994) 2975.

[25] P. Schwerdtfeger, M. Dolg, W.H. Schwarz, G.A. Bowmaker, P.D.W. Boyd, J. Chem. Phys. 91 (1989) 1762.

[26] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H.Preuss, Theor. Chim. Acta 77 (1990) 123.

[27] A. Bergner, M. Dlog, W. Küchle, H. Stoll, H. Preuss, Mol. Phys. 80 (1993) 1431.

[28] X.Y. Cao, M. Dolg, J. Chem. Phys. 115 (2001) 7348.

[29] M.J. Frisch et al., Gaussian 09, revision A.02, Gaussian, Inc., Wallingford, CT, 2009.

[30] P.B. Armentrout, L.S. Sunderlin, in: A. Dedieu (Ed.), Transition Metal Hydrides, VCH, Heidelberg, 1992.

[31] R.S. Ram, P.F. Bernath, J. Chem. Phys. 105 (1996) 2668.

[32] R.J. Van Zee, T.C. Devore, W. Weltner, J. Chem. Phys. 71 (1979) 2051.

[33] R.D. Urban, H. Jones, Chem. Phys. Lett. 163 (1989) 34.

[34] J.P. Towle, J.M. Brown, K. Lipus, E. Bachem, W. Urban, Mol. Phys. 79 (1993) 835.

[35] K. Lipus, T. Nelis, E. Bachem, W. Urban, Mol. Phys. 68 (1989) 1171.

[36] J.A. Gray, M. Li, T. Nelis, R.W. Field, J. Chem. Phys. 95 (1991) 7164.

[37] J.Y. Seto, Z. Morbi, F. Charron, S.K. Lee, P.F. Bernath, R.J. Le Roy, J. Chem. Phys. 110 (1999) 11756.

[38] C.W. Bauschlicher, P. Maitre, Theor. Chim. Acta 90 (1995) 189.

[39] Y. Morito, H. Vehara, J. Chem. Phys. 45 (1966) 4543.

[40] D.B. Grotjahn, M.A. Brewster, L.M. Ziurys, J. Am. Chem. Soc. 124 (2002) 5895.

[41] K. Tanaka, M. Shirasaka, T. Tanaka, J. Chem. Phys. 106 (1997) 6820.

[42] A. Almenningen, S. Samdal, D. Christen, J. Mol. Struct. 48 (1978) 69.

[43] L. Hedberg, T. Lijima, K. Hedberg, J. Chem. Phys. 70 (1979) 3224.

[44] C. Adamo, V. Barone, Chem. Phys. Lett. 274 (1997) 242.

[45] U. Hohm, D. Goebel, S. Grimme, Chem. Phys. Lett. 272 (1997) 328.

[46] U. Hohm, G. Maroulis, J. Chem. Phys. 124 (2006) 124312.

[47] A. Haaland, J. Nilsson, Acta. Chem. Scand. 22 (1968) 2653.

[48] C.P. Brock, Y. Fu, Acta. Crystallogr. Sect. B 53 (1997) 928.

[49] CRC Handbook of Chemistry and Physics, 85th ed., edited by D. R. Lide, CRC, Boca Raton, 2005.