Molecular Interaction of Benzalkonium Ibuprofenate and its Discrete Ingredients with Human Serum Albumin

Document Type: Regular Article

Authors

1 Deaprtment of Chemistry, Shiraz University of Technology, Shiraz, 71555-313, Iran

2 Protein Chemistry Laboratory, Department of Biology, Shiraz University, Shiraz 71454, Iran

Abstract

Studying the interaction of pharmaceutical ionic liquids with human serum albumin (HSA) can help investigating whether or not ionic liquid formation can enhance pharmacological profile of the discrete ingredients. In this respect, in the present work, the interactions of Benzalkonium Ibuprofenate, as a well-known active pharmaceutical ionic liquid, Benzalkonium Chloride, and also Sodium Ibuprofenate with HSA were studied by molecular dynamics (MD) and docking simulations. First, molecular dynamics simulation using the GROMACS 4.5.0 package was employed to obtain the equilibrium HSA structure at pressure 1 bar and temperature of 310 K. Then, molecular docking approach by AutoDock Vina using a genetic algorithm was employed to find the binding sites of the three ligands on HSA. It was revealed that the three ligands can bind to the same residues at Sudlow site II. It was also found out that steric and electrostatic interactions played major roles in the interaction of aforementioned three ligands with HSA but the contribution of these interactions in HSA binding has been altered by ionic liquid formulation.

Graphical Abstract

Molecular Interaction of Benzalkonium Ibuprofenate and its Discrete Ingredients with Human Serum Albumin

Keywords

Main Subjects


[1] H. Davis, Jr. James, Chem. Letts. 33.9 (2004) 1072.

[2] W.L. Hough, R.D. Rogers, Bull. Chem. Soc. Japan 80.12 (2007) 2262.

[3] R. Ferraz, L.C. Branco, C. Prudêncio, J.P. Noronha, Ž. Petrovski, Chem. Med. Chem. 6.6 (2011) 975.

[4] W.L. Hough, M. Smiglak, H. Rodríguez, R.P. Swatloski, S.K. Spear, D.T. Daly, J. Pernak, J.E. Grisel, R.D. Carliss, M.D. Soutullo, J.H. Davis, R.D. Rogers, New J. Chem. 31.8 (2007) 1429.

[5] W.L. Hough, R.D. Rogers, Bull. Chem. Soc. Japan 80.12 (2007) 2262.

[6] U. Kragh-Hansen, Pharmacol. Rev. 33 (1981) 17.

[7] B. Ahmad, S. Parveen, R.H. Khan, 7 (2006) 1350.

[8] Y.-J. Hu, C.-H. Chen, S. Zhou, A.-M. Bai, O.-Y. Yu, Mol. Biol. Rep. 39 (2012) 2781.

[9] S. Cohen, R. Margalit, Biochem. J. 270 (1990) 325.

[10] H.P. Rang, M.M. Dale, J. Ritter, Molecular Pharmacology, 3th ed., Churchill Livingstone, New York, 1995.

[11] H.J.C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 91 (1995) 43.

[12] E. Lindahl, B. Hess, D. van der Spoel, J. Mol. Model. 7 (2001) 306.

[13] D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, J. Comput. Chem. 26 (2005) 1701.

[14] W.F. van Gunsteren, S.R. Billeter, A.A. Eising, P.H. Huenberger, P. Kruger, A.E. Mark, W.R.P. Scott,

I.G. Tironi, Biomolecular Simulation: the GROMOS96 Manual and User Guide, Switzerland, 1996.

[15] H.J.C. Berendsen, J.P.M. Postma, W.F. Van Gunstetren, J. Hermans, in: B. Pullman (Ed.), Interaction Models for Water in Relation to Protein Hydration. Intermolecular Forces, Reidel, Dordrecht, The Netherlands, 1981.

[16] S.P. Hirshman, J.C. Whitson, Phys. Fluids 26 (1983) 3553.

[17] H.C. Andersen, J. Chem. Phys. 72 (1980) 2384.

[18] W.F. Van Gunsteren, H.J.C. Berendsen, Mol. Sim. 1.3 (1988) 173.

[19] H.J.C. Berendsen, J.P.M. Postma, W.F. Van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81 (1984) 3684.

[20] T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98 (1993) 10089.

[21] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103 (1995)

8577.

[22] B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraajie, J. Comput. Chem. 18 (1997) 1463.

[23] E.H. Kennard, Kinetic Theory of Gases, McGraw-Hill, New York, 1963.

[24] K. Huang, Statistical Mechanics, Wiley, New York, 1963.

[25] HyperChem, Release 7.0 for windows, Hypercube, Inc., 2002.

[26] A. Streitwieser, Molecular Orbital Theory for Organic Chemists, Wiley, New York, 1961.

[27] B. Gautam, G. Singh, G. Wadhwa, R. Farmer, S. Singh, A.K. Singh, P.A. Jain, P.K. Yadav, Bioinformation 8.3 (2012) 134.

[28] O. Trott, A.J. Olson, J. Comput. Chem. 31.2 (2010) 455.

[29] G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson, J. Comput.

Chem. 19.14 (1998) 1639.

[30] S. Curry, H. Mandelkow, P. Brick, N. Franks, Nature Struct. Biol. 5 (1998) 827.

[31] S. Curry, P. Brick, N.P. Franks, Biochim. Biophys. Acta 1441 (1999) 131.

[32] I. Petitpas, A.A. Bhattacharya, S. Twine, M. East, S. Curry, J. Biol. Chem. 276 (2001) 22804