Hydrophilicity and antibacterial properties of Ag / TiO2 nanoparticle

Document Type: Regular Article

Author

Islamic Azad University- central Tehran Branch - Tehran - Iran

Abstract

TiO2 thin films and Ag/TiO2 nanoparticles were prepared by CVD and plasma bombardment method. XRD results showed the presence of Ag nanoparticles in TiO2 matrix. SEM image confirmed formation of Ag nanoparticles. XPS analysis was utilized to study the chemical state of the Ag/TiO2 nanostructure. Statistical surface analysis revealed that since there is a linear relation between logarithmic diagram of Cq(r) and r < Rc ~ 4 µm for all q, both surfaces have self-affine structure. Formation of Ag/TiO2 nanoparticles led to the reduction of  roughness of the samples from 0.72 nm to 0.61 nm. Ag/TiO2 nanoparticles represented greater hydrophilicity under UV illumination and visible light compared with TiO2. TiO2 thin films and Ag/TiO2 nanoparticles showed an inhibition for proliferation of the bacteria on their surfaces. Antibacterial activity of the samples contributed to the growth inhibition of the bacteria on their surfaces.

Graphical Abstract

Hydrophilicity and antibacterial properties of Ag / TiO2 nanoparticle

Keywords

Main Subjects


[1] K. Guan, Surf. Coat. Technol. 191 (2005) 155.

[2] M. Vohra, S. Kim, W. Choi, J. Photochem. Photobiol.A Chem. 160 (2003) 55.

[3] S. Hata, Y. Kai, I. Yamanaka, et al., JSAE Rev. 21 (2000) 97.

[4] R. Asahi, T. Morikawa, T. Ohwahi, et al., Science 293 (2001) 269.

[5] J. Moon, C.Y. Yun, K.W. Chung, M.S. Kang, J. Yi, Catal. Today 87 (2003) 77.

[6] S. Kim, W. Choi, J. Phys. Chem. B 109 (2005) 5143.

[7] F.B. Li, X.Z. Li, Chemosphere 48 (2002) 1103.

[8] Y.L. Kuo, H.W. Chen, Young Ku, Thin Solid Films 515 (2007) 3461.

[9] S.Y. Treschev, P.W. Chou, Y.H. Tseng, J.B. Wang, E.V. Perevedentseva, C.L. Cheng, Appl. Catal. B: Environ. 79 (2008) 8.

[10] O. Zywitzki, T. Modes, P. Frach, D. Gloss, Surf. Coat. Technol. 202 (2008) 2488.

[11] A.L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth, New York, Cambridge University Press, 1995.

[12] T. Halpin-Healy, Y.C. Zhang, Phys. Rep. 245 (1995) 215.

[13] J. Krug, H. Spohn, in: C. Godreche (Ed.), Solids Far from Equilibrium Growth, Morphology and Defects New York, Cambridge University Press, 1990.

[14] P. Meakin, Fractal, Scaling and Growth Far from Equilibrium, Cambridge:Cambridge University Press, 1998.

[15] M. Kardar, Physica A 281 (2000) 295.

[16] A.A. Masoudi, F. Shahbazi, J. Davoudi, M.R. Rahimi Tabar, Phys. Rev. E 65 (2002) 026132.

[17] O. Akhavan J. Colloid Interface Sci. 336 (2009) 117.

[18] J. Chen, G. Wan, Y. Leng, et al. Sci. China Ser ETechnol. Sci. 49 (2006) 20.

[19] E.V. Skorb, L.I. Antonouskaya, N.A. Belyasova, D.G. Shchukin, H. Mohwald, D.V. Sviridov, Appl. Catal. BEnviron.  84 (2008) 94.

[20] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc. 130 (2008) 1676.

[21] S.K. Pradhan, P.J. Reucroft, F. Yang, A. Dozier, J. Cryst. Growth 256 (2003) 83.

[22] T. Sugimoto, K. Okada, H. Itoh, J. Colloid Interface Sci. 193 (1997) 140.

[23] M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng, R. Xu, Chem. Mater. 14 (2002)1974.

[24] S. Yang, L. Gao, J. Am. Ceram. Soc. 2488 (2005) 968.

[25] A.I. Zad, G. Kavei, M.R. Rahimi Tabar, S.M.V. Allaei, J. Phys. Condens. Matter 15 (2003) 1889.

[26] P. Sangpour, G.R. Jafari, O. Akhavan, A.Z. Moshfegh, M.R. Rahimi Tabar, Phys. Rev. B 71 (2005) 155423.

[27] N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B 105 (2001) 3023.

[28] R. Wang, N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, Phys. Chem. B 103 (1999) 2188.

[29] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 1 (1995) 69.

[30] S.D. Sharma, D. Singh, K.K. Saini et al., Appl. Catal. A 314 (2006) 40.

[31] J.C. Yu, J. Yu, W. Ho, J. Zhao, Photochem. Photobiol. A Chem. 148 (2002) 331.

[32] R. Wang, K. Hashimoto, A. Fujishima et al., Adv. Mater. 10 (1998) 135.

[33] R.D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, Phys. Chem. B 105 (2001) 1984.

[34] J. Kirchnerova, M.L.H. Cohen, C. Guy, D. Klvana, Appl. Catal. A-General. 282 (2005) 321.

[35] L. Bedel1, C. Cayron, M. Jouve, F. Maury, Nanotechnology 23 (2012) 015603.

[36] C. Photiphitak, P. Rakkwamsuk, P. Muthitamongkol, C. Sae-Kung, C. Thanachayanont, Int. J. Photoenergy 2011 (2011) 1.

[37] L. Mai, D. Wang, S. Zhang, Y. Xie, C. Huang, Z. Zhang, Appl. Surf. Sci. 257 (2010) 974.

[38] M. Guzman, J. Dille, S. Godet, Nanomed. Nanotechnol. Biol. Med. 8 (2012) 37.