Mutual interplay between interactions of pi electrons with simultaneous σ-hole interactions: A computational Study

Document Type: Regular Article

Authors

Arak University

Abstract

In this study, the role of interaction of pi electrons on the strength of simultaneous σ-hole interactions (pnicogen, chalcogen and halogen bonds) is investigated using the quantum chemical calculations. X-ben||TAZ∙∙∙Y1,Y2,Y3 complexes (X = CN, F, Cl, Br, CH3 , OH and NH2, TAZ= s-triazine and Y1,Y2 and Y3 denotes PH2F, HSF, and ClF molecules) is introduced as a model. The results show that interaction of pi electrons of X-ben and TAZ rings in X-ben||TAZ∙∙∙Y1,Y2,Y3 complexes are effective in enhancing the strength of simultaneous σ-hole interactions than that in the TAZ∙∙∙Y1,Y2,Y3 complexes. We show that the effect of the substituents on the studied complexes strongly depends on the nature of the substituents on the X-ben ring. The electron-donor and electron-acceptor substituents increase and decrease the stability of complexes, respectively. The electronic properties of the complexes have been analyzed using molecular electrostatic potential (MEP), and the parameters were derived from the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) methodologies.

Graphical Abstract

Mutual interplay between interactions of pi electrons with simultaneous σ-hole interactions: A computational Study

Keywords

Main Subjects


[1] K. Muller-Dethlefs, P. Hobza, Chem. Rev. 100 (2000) 143.

[2] P. Politzer, J.S. Murray, T. Clark, Phys. Chem.Chem. Phys. 15 (2013) 11178 and references therein.

[3] T. Clark, WIREs Comput. Mol. Sci. 3 (2013) 13.

[4] P. Politzer, J.S. Murray, T. Clark, Phys. Chem. Chem. Phys. 12 (2010) 7748.

[5] J.S. Murray, A.K.E. Riley, P. Politzer, T. Clark, Aust. J. Chem. 63 (2010) 1598.

[6] T. Clark, M. Hennemann, J.S. Murray, P. Politzer, J. Mol. Model. 2 (2007) 291.

[7] M. Solimannejad, A.R. Gholipour, Struct. Chem. 24 (2013) 1705.

[8] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.

[9] Y. Zhao, N.E. Schultz, D.G. Truhlar, J. Chem. Theory. Comput. 2 (2006) 364.

[10] S.B. Boys, F. Bernardi, Mol. Phys. 19 (1970) 553.

[11] K.F. Biegler, W.J. Schonbohm, D. Bayles, J. Comput. Chem. 22 (2001) 545, AIM2000.

[12] T. Lu, F. Chen, Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 33 (2012) 580.

[13] M.W. Schmidt, K.K. Baldridge, J.A. Boat, S.T. Elbert, M.S. Gordon, J.H Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14 (1993) 1347.

[14] F.A. Bulat, A. Toro-Labbe, T. Brinck, J.S. Murray, P. Politzer (2010) J. Mol. Model. 16 (2010) 1679.

[15] A. Ebrahimi, M. Habibi, R.S. Neyband, A.R Gholipour, Phys. Chem. Chem. Phy. 11 (2009) 11424.

[16] A.R. Gholipour, H. Saydi, M.S. Neiband, R.S. Neyband, Struct. Chem. 23 (2012) 367.

[17] W. Zhu, X. Tan, J. Shen, X. Luo, F. Cheng, P.C. Mok, R. Ji, K. Chen, H. Jiang, J. Phys. Chem. A 107 (2003) 2296.

[18] S.E. Wheeler, K.N. Houk, J. Am. Chem. Soc. 130 (2008) 10854.

[19] A.L. Ringer, C.D. Sherrill, J. Am. Chem. Soc. 131 (2009) 4574.

[20] X. Lucas, C. Estarellas, D. Escudero, A. Frontera, D. Quinonero, P.M. Deya, Chem. Phys. Chem. 10 (2009) 2256.

[21] D. Escudero, A. Frontera, D. Quinonero, P.M. Deya, J. Comput. Chem. 30 (2009) 75.

[22] O.A. Zhikol, O.V. Shishkin, K.A. Lyssenko, J. Leszczynski, J. Chem. Phys. 122 (2005) 144104.