The DFT chemical investigations of optoelectronic and photovoltaic properties of short-chain conjugated molecules

Document Type: Regular Article

Authors

1 ESTM University Moulay Ismail

2 FS Meknes University Moulay Ismail

3 FS University Moualy Ismail

4 FST Errachidia

Abstract

The research in the short-chain organic -conjugated molecules has become one of the most interesting topics in the fields of chemistry. These compounds have become the most promising materials for the optoelectronic device technology. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The control of the band gap of these materials is a research issue of ongoing interest. In this work, a quantum chemical investigation has been performed to explore the optical and electronic properties of a series of different short-chain compounds based on thiophene. Different electron side groups were introduced to investigate their effects on the electronic structure. The theoretical knowledge of the HOMO and LUMO energy levels of the components is basic in studying organic solar cells so the HOMO, LUMO, Gap energy and the photovoltaic properties of the studied compounds have been calculated and reported. These properties suggest these materials as a good candidate for organic solar cells.

Graphical Abstract

The DFT chemical investigations of optoelectronic and photovoltaic properties of short-chain conjugated molecules

Keywords

Main Subjects


[1] H.A.M. Van Mullekom, J.A.J.M. Vekemans, E.W. Meijer, Chem. Eur. J. 4 (1998) 1235.

[2] K. Müllen, G. Wegner (Eds.), Electronic Materials:The Oligomers Approach, Wiley-VCH, Weinheim, New York, 1998, pp. 105-197; J. Cornil, D. Beljonne, J.L. Brédas, K. Mûllen, G. Wegner (Eds.), Electronic Materials: The Oligomers Approach, Wiley-VCH, Weinheim, New York, 1998, pp. 432-447 (and the references therein).

[3] O. Ninis, S.M. Bouzzine, H. Toufik, F. Lamchouri, M. Abarkan, M. Hamidi, M. Bouachrine, J. Appl. Chem. Res. 7 (2013) 19.

[4] S. Bouzakraoui, S.M. Bouzzine, M. Bouachrine, M. Hamidi, Sol. Energy Mater. Sol. Cells 90 (2006) 1393; S. Bouzakraoui, S.M. Bouzzine, M. Bouachrine, M. Hamidi, J. Mol. Struct. (Theochem), 725 (2005) 39; H. Zgou, S.M. Bouzzine, S. Bouzakraoui, M. Hamidi, M. Bouachrine. Chinese Chem. Lett.. 19 (2008) 123; S.M. Bouzzine, A. Makayssi, M. Hamidi, M. Bouachrine, J. Mol. Struct. (Theochem), 851 (2008) 254; R. Mondal, H.A. Becerril, E. Verploegen, D. Kim, J.E. Norton, S. Ko, N. Miyaki, S. Lee, M.F. Toney, J.-L. Bredas, M.D. McGehee , Z. Bao J. Mater. Chem. 20 (2010), 5823.

[5] B.C. Thompson, J.M.J. Fréchet, Angew. Chem. Int. Ed. 47 (2008) 58.

[6] A. Marrocchi, A. Spalletti, S. Ciorba, M. Seri, F. Elisei, A. Taticchi. J. Photoch. Photobio. A: Chem. 211 (2010) 162.

[7] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.

[8] R. Ditchfield, W.J. Hehre, J.A. Pople, J. Chem. Phys. 54 76 (1971).

[9] W.J. Hehre, R. Ditchfiesld, J.A. Pople, J. Chem. Phys. 56 (1972) 643.

[10] P.C. Hariharan, J.A. Pople, Mol. Phys. 27 (1974) 209.

[11] M.S. Gordon, Chem. Phys. Lett. 76 (1980) 33.

[12] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, Jr., K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R.Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al- Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, GAUSSIAN 03, Revision B.04, Gaussian, Inc., Pittsburgh PA, 2003.

[13] S.V. Meille, A. Farina, F. Bezziccheri, M.C. Gallazi, Adv. Mater. 6 (1994) 848.

[14] M. Bouachrine, A. Echchary, S.M. Bouzzine, M. Amine, M. Hamidi, A. Amine, T. Zair, Phys. Chem. News 58 (2011) 61.

[15] J. Casado, V. Hernàndez, F.J. Ramirez, J.T. López Navarrete, Mol. Struct. (Theochem.) 463 (1999) 211.

[16] S.M. Bouzzine, S. Bouzakraoui, M. Bouachrine, M. Hamidi, J. Mol. Struct. (Theochem.) 726 (2005) 271.

[17] H. Derouiche, V. Djara, Sol. Energy Mater. Sol. Cells 91 (2007) 1163.

[18] L. Zhang, Q. Zhang, H. Ren, H. Yan, J. Zhang, H. Zhang, J. Gu, Sol. Energy Mater. Sol. Cells 92 (2008) 581.

[19] S. Gunes, H. Neugebauer, N.S. Sariciftci, Chem. Rev.107 (2007) 1324.

[20] A. Gadisa, M. Svensson, M.R. Andersson, O. Inganas, Appl. Phys. Lett. 84 (2004) 1609; M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Adv. Mater. 18 (2006) 789; C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Adv. Funct. Mater. 11 (2001) 374.

[21] L. Yang, J. Feng, A. Ren, Polymer 46 (2005) 10970.