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      In this paper, at first we formulate the lowest order constrained variational method for the relativistic case of an interacting fermion 
system at finite temperature. Then, we used this formalism to calculate some thermodynamic properties of liquid

 3He in the relativistic 
regime. The results show that the difference between total energies of the relativistic and non-relativistic cases of liquid 3He decreases by 
increasing the density. On the other hand, at densities smaller than ρ = 0.010 Å-3, which is close to the theoretical saturation point of the 
system, this difference increases as the temperature increases. We also found that the relativistic calculations lead to the thermodynamic 
characteristics for liquid 3He which are in a better agreement with the experimental data with respect to those of non-relativistic 
calculations.  
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INTRODUCTION 
 
      Liquid 3He, an important system in the condensed 
matter physics, is the only real fermionic fluid which has 
unique properties [1,2]. To investigate this system 
theoretically, the most important theory is the Landau 
phenomenological theory which introduces the 
quasiparticles concept [3,4]. Although this theory provides 
accurate description of the observed experimental properties 
of liquid 3He, it has some shortcomings, e.g., due to the 
finite lifetime of quasiparticles, they are well-defined only 
at low temperatures and because of the many-particle nature 
of liquid 3He, the Landau parameters are undetermined in 
this theory [5]. Therefore, different many-body methods 
have been employed to investigate the properties of liquid 
3He. These methods include Monte Carlo-Green function 
which determines the ground state energy of the liquid 3He 
[6], the Fermi-hypernated chain which is a variational 
method [7], the correlated basis functions which contain a 
perturbation term of strong repulsive force  in  the  potential 
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[8,9] and the density functional theory based on the 
variation of energy with respect to density [10,11]. Despite 
all made efforts, there is no comprehensive microscopic 
theory to describe the behavior of liquid 3He exactly and all 
performed works have the relative and partial agreement 
with the experimental results. In majority of the mentioned 
many-body methods, the trial wave function of the N-body 
system is considered as multiplication of the Slater 
determinant of N non-interacting particles and the 
correlation operator. Therefore, in order to obtain the better 
results and a more accurate microscopic method including 
all properties of liquid 3He, some corrections have been 
made in the correlation operator. These corrections include 
backflow effects [12], momentum dependency in the 
correlations [13] and spin-spin correlations [14-16]. In spite 
of these corrections, the results of microscopic methods do 
not show a good agreement with the experimental results. 
      On the other hand, one important issue in highly 
correlated fermionic systems is the investigation of 
relativistic effects on the properties of these systems. The 
relativistic effects play an important role in nuclear matter 
[17,18], electron gas [19-20], and chemical systems [21,22].  
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Considering the relativistic form of energy plays also an 
important role in the properties of fermionic systems in 
different phases and the pairing mechanism of these systems 
[23]. Therefore, knowing the properties of a relativistic 
fermionic systems can help to get some insights into these 
up-to-now underlying issues. Special characteristic of liquid 
3He as the only real fermionic system motivated us to study 
its properties using a variational method. 
      Lowest order constrained variational (LOCV) method, 
adopted in this paper, is one of the microscopic methods to 
investigate the highly correlated systems. This method, 
which is based on the cluster expansion of energy 
functional, is a self-consistent method and does not generate 
any free parameter. We have investigated the 
thermodynamic properties of liquid 3He using this method. 
The results obtained by this method have a good agreement 
with experimental results [14-16]. 
      Another motivation for considering the relativistic 3He 
is that in real cases the energy of a particle obeys special 
theory of relativity. Therefore, unlike the other techniques in 
which correlation function is employed to improve the 
systems, we count on the energy of the 3He atoms in a 
relativistic regime. Therefore, In fact, in this paper we use 
the LOCV method and investigate the thermodynamic 
properties of liquid 3He considering the relativistic form of 
the energy. In other words, the effects of relativistic 
correction have been investigated to test the obtained 
results. Some theoretical discussions and some comparisons 
will be included to provide new insights into this system. 

 
RELATIVISTIC LOCV FORMALISM 
 
      The lowest order constrained variational method is 
based on cluster expansion of energy functional [24],  
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where E1 and E2 are respectively one-body energy per 
particle and the two-body energy per particle, etc. 
      Now, we consider a system of N interacting atoms. The 
number of particles of this system is,  
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where n(k) is the Fermi-Dirac distribution function,  
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In Eq. (3),  (k) is the single particle energy which in the 
relativistic form is,  
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and in the case of non-relativistic is,  
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In the above equations µ is the chemical potential obtained 
by considering the following constraint,  
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      In the cluster expansion method, the one-body energy 
per particle at finite temperature is as follows,  
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Therefore, after some algebra we have the following 
relations for the one-body energy per particle at finite 
temperature,  
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For the two-body energy per particle we have [24],  
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In the above equation, W (12) is the effective two-body 
potential,  
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where F (12) is the two-body correlation operator, V (12) is 
the two-body potential and t(i) is the kinetic energy operator 
which we consider it in the relativistic form. 
      After doing some algebra, we get the following relation 
for the two-body effective potential in the relativistic 
regime,  
 
 

      1 2(12) (12) (12) (12)NR R RW W W W                                 (11) 

 
where WNR (12) is the effective two-body potential of non-
relativistic 3He and WR1 (12)  and  WR2 (12)  are the first and 
second order relativistic corrections in the effective two-
body potential of liquid 3He, respectively.  
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In Eq. (12), V(r) is the inter-particle potential used as the 
Lennard-Jones potential, and f(r) is the two-body correlation 
function. After some algebra, the following equation is 
obtained for the relativistic two-body energy per particle,  
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     (13) 
where γ(r)  is as follows,  
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We can write Eq. (13) as,  
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where the first term, 

2
NRE , is the non-relativistic two-body 

energy per particle, and the second term is due to the 
relativistic corrections in the two-body energy. The non-
relativistic two-body energy, 

2
NRE  is as follows,  
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      To obtain the thermodynamic properties of the system,   
relation,  
 
      F E TS                                                                     (17) 
  
where E is the total energy, T is the temperature and S is the 
entropy which for N fermion is as follows [25],  
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Now, we minimize the free energy with respect to the 
variation in the correlation function, f(r), under the 
normalization constraint [26],  
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By this minimization, we get the following differential 
equation for the two-body correlation function  
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where g(r) = f(r) a(r) and λ is the Lagrange multiplier 
imposed   by  the  normalization  constraint.  The  two-body  
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correlation function is obtained by solving this differential 
equation numerically, and then the energy of the system can 
be calculated. 
 
RESULTS AND DISCUSSION 
 
      In this section, we present the results of our calculations 
for the thermodynamic properties of liquid 3He in the 
relativistic regime, and compare the results with those of 
non-relativistic case and also the experimental data. 
      As the first theoretical investigation of the relativistic 
effects, we investigate the kinetic energy of liquid 3He. In 
Fig. 1, the kinetic energy per particle (one-body energy) of 
liquid 3He is shown as a function of density at different 
temperatures, in the relativistic and non-relativistic cases. 
This figure shows that at a given temperature, for densities 
smaller than about ρ = 0.014 Å-3, the kinetic energy of 
relativistic liquid 3He is smaller than that of non-relativistic 
case and their differences are considerable especially at T ≳ 
0.5 K. At this density range, the relativistic curves have 
more difference with the non-relativistic system by 
increasing the temperature and decreasing the density as 
well. As we documented previously [15-16], the saturation 
point of these system, i.e. the minimum point of total 
energy, occurs at ρ = 0.012 Å-3, and the density ρ = 0.014 Å-3  
is very close to the saturation point. Saturation point is a 
density in which the helium droplets begin to construct. 
Therefore, at the densities smaller than this point, the 
system tends to be more gaseous. The energy and 
momentum of this system at these densities can be 
considered nonrelativistic. On the other hand, calculations 
of partition function [20] show that in both quantum and 
classical systems, the relativistic effects lead to the  increase 
of the kinetic energy, and by increasing the temperature, the 
portion of interaction becomes less influencing and the 
difference between relativistic and non-relativistic systems 
increases. In other words, the main difference between 
relativistic and non-relativistic systems lies in the kinetic 
energy contribution. This is the main reason for more 
difference in the kinetic energies of relativistic and non-
relativistic cases at high temperature. Figure 1 also shows 
that the relativistic and non-relativistic results are nearly 
similar for densities greater than ρ = 0.014 Å-3 at 
temperatures smaller than T = 1.5 K. At these  densities,  the  

 
 
difference in kinetic energies of relativistic and non-
relativistic liquid 3He decreases by increasing the 
temperatures. On the other hand, at temperatures in the 
range of 2.5 K ≲ T ≲ 3.5 K, for densities greater than ρ = 
0.014 Å-3, the kinetic energy of relativistic liquid 3He is 
greater than that of non-relativistic case.  

The results of two-body energy per particle for 
relativistic and non-relativistic liquid 3He are compared for 
different densities in Tables 1 and 2 at T = 1.5 and T = 2.5 
K, respectively. In these tables, 2

NRE  (E2R) denotes for non-

relativistic (relativistic) two-body energy per particle of 
liquid 3He. As mentioned previously, the relativistic two-
body energy per particle consists of three parts (see Eq. 
(15)). At a given temperature, the effect of this corrections 
is of the order of 10-3 and for some densities it reaches to the 
order of 10-2. It was found that as the temperature increases, 
the magnitude of the relativistic corrections in the two-body 
energy of liquid 3He increases up to 10-1. However, by 
increasing the density, generally, the effect of this 
corrections reaches to the order of 10-3 and for some 
densities to the order of 10-1. Our results show that in most 
densities, for the relativistic liquid 3He, the two-body energy 
per particle is smaller than that for the non-relativistic case. 
The importance of these results is that considering the 
relativistic form for the energy of fermions affects the two-
body correlation function and therefore the portion of 
effective potential (see Eqs. (11) and (12)). Therefore, the 
interaction energy of the system, E2, also changes.  
      In Fig. 2, the total energies per particle of relativistic and 
non-relativistic liquid 3He at different temperatures are 
plotted versus density. This figure shows that the total 
energies of relativistic and non-relativistic liquid 3He have a 
considerable difference for ρ ≲ 0.010 Å-3 which is close to 
the saturation point. This difference increases by increasing 
the temperature, but both systems behave similar for ρ ρ ≳ 
0.010 Å-3. By increasing the temperature, this difference is 
very small at densities greater than about 0.010 Å-3   except 
for temperature range 0.5 K ≲ T < 1.5 K in which the 
difference is approximately constant as the density increases 
up to ρ = 0.017 Å-3. As clearly shown in Fig. 2, for                ρ 
≳ 0.010 Å-3, the behavior of total energy curve of relativistic 
liquid 3He at temperature range 1.5 K ≲ T ≲ 2.5 K, is not 
similar with other temperature ranges. At this temperature  
range,  unlike T ≲ 1.5 K,  for  densities  greater  
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Fig.  1. One-body (kinetic) energy per particle of  liquid 3He as a function of density at  different   
            temperatures. Dotted (full) curves show the none-relativistic (relativistic) total energy. 

 
 

 
Fig.  2. Total energy per particle of liquid 3He as a function of density at different temperatures. Dotted   

                (full) curves show the none-relativistic (relativistic) total  energy. 
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Fig.  3. The entropy as a function of density for the relativistic liquid 3He (full curves) and for non- 

                       relativistic liquid 3He (dotted curves) at different temperatures. 
 
 

 
Fig.  4. The  entropy  as a function  of temperature for the  relativistic   liquid  3He (dash-dotted curve)   
            and    non-relativistic   liquid   3He   (full curve)   at  ρ = 0.0164 Å-3.  Dotted   curve  shows  the  

                 experimental results [23]. 
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Fig.  5. The entropy as a function  of temperature for the relativistic liquid 3He (dash-dotted curve) and  
             non-relativistic  liquid  3He  (full  curve) at ρ = 0.0185 Å-3.  Dotted  curve shows the experimental  
              results [23]. 
 

 
Fig.  6. The entropy  as a function  of temperature for the relativistic  liquid 3He (dash-dotted curve)  
            and   non-relativistic    liquid  3He   (full  curve) at ρ = 0.0208 Å-3.  Dotted   curve  shows   the  

               experimental results  [23]. 
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Fig.  7. The entropy as a function  of temperature for the relativistic  liquid 3He (dash-dotted curve)  
            and  non-relativistic   liquid  3He   (full curve)  at   ρ = 0.0224  Å-3.  Dotted   curve  shows  the  

                experimental results [23]. 
 

 

 
Fig.  8. The  pressure  of  relativistic (full curves)  and  non-relativistic liquid 3He (dotted curves) as a  

               function of density  for different temperatures. 
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 Table 1. The Comparison of Two-body Energy per Particle for  Relativistic and  
                                Non-relativistic Liquid 3He at T = 1.5 K  

 

ρ (Å-3) E2NR (K) E2R (K) 

0.008 -2.8469 -2.8492 

0.009 -3.2036 -3.2078 

0.01 -3.5580 -3.5650 

0.011 -3.8522 -3.8602 

0.012 -4.0284 -4.0360 

0.013 -4.0357 -4.0437 

0.014 -3.8328 -3.8414 

0.015 -3.3691 -3.3774 

0.016 -2.5790 -2.5880 

0.017 -1.4218 -1.4204 

0.018 0.1817 0.1774 
 

  
 Table 2. The Comparison of Two-body Energy Per particle for Relativistic and 

                                 Non-relativistic Liquid 3He at T = 2.5 K 
 

ρ (Å-3) E2NR (K) E2R (K) 

0.008 -2.7954 -2.8131 

0.009 -3.1408 -3.1608 

0.010 -3.5053 -3.5082 

0.011 -3.8025 -3.8052 

0.012 -3.9755 -3.9781 

0.013 -3.9830 -3.9870 

0.014 -3.7803 -3.7843 

0.015 -3.3172 -3.3206 

0.016 -2.5285 -2.5324 

0.017 -1.3630 -1.3680 

0.018 0.2130 0.2287 
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 Table 3. The Comparison of Free Energy for Relativistic and Non-relativistic Liquid 3He with the  
                       Experimental Results at ρ = 0.0166 Å-3   

 

T (K)   ENR (K) FR (K)  FEXP (K) 

0.5 0.96095 0.95944 0.796300 

1 0.59531 0.58864 0.425930 

1.5 0.02321 0.02038 -0.203704 

2 -0.68239 -0.70772 0.833333 

 

 

 
Fig.  9. The specific heat vs. temperature for relativistic (dash-dotted curve) and non-relativistic (full  
             curve) liquid  3He  for ρ = 0.0166 Å-3 . The   results   of   FPS  calculations   [24] (dashed-curves)  and   the  

              experimental data[2] (Dotted  curve ) are also shown for comparison. 
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Fig.  10. The specific heat  vs.  temperature for relativistic (dash-dotted curve) and non-relativistic     

             (full curve) liquid 3He for ρ = 0.0164 Å-3. The  results  of   FPS  calculations  [24] (dashed-curves) and  
                  the experimental data [2] (Dotted  curve) are also shown for comparison. 

 

 
Fig. 11. The specific heat vs. temperature for relativistic liquid 3He (dash-dotted curve) and non- 
              relativistic liquid 3He (full curve) at ρ = 0.0185 Å-3. Dotted curve shows  the experimental  
               results [23]. 
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than 0.017 Å-3, the total energy of relativistic liquid 3He is 
greater than that of non-relativistic case. Since the total 
energy of the system is the sum of one-body and two-body 
energies, it is concluded that the dominant term of energy is 
the one-body energy. Here, it should be noted that these 
density and temperature dependences of total energy are 
mainly due to the behavior of kinetic energy contribution 
which was given in the previous discussions regarding the 
kinetic energy of this system (Fig. 1).  
      Now, for further investigation, our calculations will be 
compared with some experimental data. In Fig. 3, the 
entropy at different temperatures is plotted as a function of 
density. At T ≲ 1.5 K, for all densities, the entropy of 
relativistic liquid 3He is smaller than that of non-relativistic 
case, and their difference decreases by increasing the 
density. On the other hand, this behavior is not seen at T ≳ 
1.5. Especially at T ≳ 2 K, for densities greater than about 
0.010 Å-3, the entropy of non-relativistic liquid 3He is 
smaller than that of relativistic liquid case. We can see that 
by increasing temperature, the difference between entropies 
of these cases decreases for  ≲ 0.010 Å-3. We found that 
this behavior is not observed at 1.5 K ≲ T ≲ 2 K, and in this 
range, the difference of entropies of relativistic and non-
relativistic liquid 3He is almost constant for all densities. 
Figure 4 shows the entropy of the system as a function of 
temperature at ρ = 0.0164 Å-3 for both relativistic and non-
relativistic liquid 3He. The experimental data [27] are also 
plotted for comparison. As seen in this figure, the entropy of 
relativistic system becomes closer to that of experiment. 
This behavior is held nearly for all considered temperatures. 
The entropy of system as a function of temperature for ρ = 
0.0185 Å-3 is plotted in Fig. 5. The experimental results are 
also presented for comparison. At T ≲ 1.7 K, the results of 
relativistic liquid 3He are closer to experimental data with 
respect to the non-relativistic case, however at temperatures 
greater than about this temperature, the non-relativistic 
results are better. Figures 6 and 7 show the entropy of 
system for densities ρ = 0.0208 Å-3 and ρ = 0.0224 Å-3, 
respectively. For ρ = 0.0208 Å-3, at T ≲ 1.75 K, the entropy 
difference between the relativistic system and experimental 
data is smaller than that of the non-relativistic liquid 3He. 
This behavior is also observed for ρ = 0.0224 Å-3 at T ≲ 1.8 
K. 
      In  Table 3,  the  free  energies  of  relativistic  and  non- 

 
 
relativistic liquid 3He and the experimental data [27] are 
compared for ρ = 0.0166 Å-3. As it is seen, at all 
temperatures, the free energy of relativistic liquid 3He has a 
more agreement with experimental data with respect to the 
non-relativistic case. This indicates that is preferred to 
consider the liquid 3He as a relativistic system at T ≳ 2 K. It 
is found that at these temperatures, the magnitude of 
relativistic corrections is of the order of 0.01 K which is 
relatively large. 
      The pressure of relativistic liquid 3He has been plotted 
as a function of density for some temperatures. This figure 
shows that by increasing the temperature, the equation of 
state of liquid 3He becomes more stiffer, and therefore the 
system becomes more incompressible. From the equation of 
state, the critical temperature, at which the phase transition 
between vapor and liquid occurs, can be obtained using the 
inflection point condition of (P - ρ)-isotherms,  
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Our results show that the value of critical temperature is 4.5 
K (4.8 K) for relativistic (non-relativistic) liquid 3He. 
Experimental critical temperature is 3.32 K [29]. This shows 
that considering the liquid 3He as a relativistic system leads 
to a considerable effect on the critical temperature, and the 
relativistic corrections are relatively important. 
      The specific heat of relativistic and non-relativistic 
liquid 3He as well as the results of FPS [28] and 
experimental data are shown in Fig. 9. As shown in this 
figure, although, our results of both relativistic and non-
relativistic liquid 3He have a good agreement with FPS data, 
the specific heat of relativistic case shows a better 
agreement. At 0.5 K ≲ T ≲ 2 K, our results for relativistic 
liquid 3He become closer to experimental data rather than 
FPS data and the results of non-relativistic liquid 3He. The 
specific heat as a function of temperature is plotted for 
densities ρ = 0.0164 and 0.0185 Å-3 in Figs. 10 and 11, 
respectively. The experimental data [23] are also shown for 
comparison. Our results show that the specific heat of 
relativistic liquid 3He becomes close to experimental data at 
T ≲0.5 K.  Furthermore,   for  ρ = 0.0164 Å-3,   the  difference  
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between specific heat of relativistic liquid 3He and 
experimental data is smaller than that of non-relativistic 
case.  
 
SUMMARY AND CONCLUSIONS 
 

      In this work, the lowest order constrained variational 
method was formulated for an interacting fermion system in 
the relativistic case, then some thermodynamic properties of 
liquid3He in the relativistic regime were calculated at finite 
temperature using this formalism. The Lenard-Jones 
potential was used in our calculations. The calculated 
properties of this relativistic system were compared with 
those of the non-relativistic case and also were compared 
with the experimental results. Our results showed that the 
kinetic energy (one-body energy per particle) of relativistic 
and non-relativistic liquid 3He increases with increasing 
temperature and density as well. It was found that in most 
densities, the two-body energy per particle for the 
relativistic liquid 3He is less than that for the non-relativistic 
case. It was found that in the term of total energy which is 
the sum of one-body and two-body energies, the dominant 
term is the one-body energy. Our calculations showed that 
the entropy of relativistic and non-relativistic liquid 3He 
increases by decreasing the temperature and increasing 
density. We also found that the free energy of relativistic 
case of the system is closer to the experimental values with 
respect to the non-relativistic case. This behavior is more 
obvious at temperatures greater than T = 2 K. The difference 
between specific heat of relativistic liquid 3He and 
experimental data is smaller than that of non-relativistic 
case and experimental data. The pressure curve of 
relativistic liquid 3He showed that the equation of state of 
liquid 3He becomes stiffer, and therefore the system is more 
incompressible by increasing the temperature. The critical 
temperature of non-relativistic liquid 3He is TC = 4.8 K, TC = 
4.8 K, while for the relativistic liquid 3He, it is TC = 4.5 K. 
This shows that the relativistic corrections in liquid 3He are 
relatively important, and the results are closer to the 
experimental data for the critical temperature (TC = 3.32 K). 
Finally, we found that there is an overall agreement between 
our results and experimental results. Including the three-
body  cluster  energy  and  spin  polarization   effects  in  the  

 
 
correlation function can improve the results. These issues 
can change the calculations to a more accurate one. 
However, the agreement between our results and the 
experimental data is rather good. Here, it should be noted 
that the extracted relativistic formalism of this work can be 
extended for the other dense correlated fermionic systems. 
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