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 In this article, the effect of the nonextensivity parameter on the energy fluctuations of nonextensive systems is studied in two different 
versions of the Tsallis statistical mechanics. Once a general expression has been reported for the energy fluctuations in the second version 
(Tsallis work in 1988), the energy fluctuations of an ideal gas and a harmonic oscillator are studied in the second and fourth(OLM choice 
for the mean energy constrain) versions of the Tsallis statistical mechanics. The results for the fourth version indicate that relative energy 
fluctuations are strongly affected by the nonextensivity parameter via the number of accessible states. In fact, in the case of subextensive 
systems, the nonextensivity parameter leads to the fewer accessible states compared to that of the extensive systems and, therefore, smaller 
relative energy fluctuations are expected. For super-extensive systems, however, relative energy fluctuations are found to be larger than 
those in extensive systems because of the greater accessible states available. Our studies show that very large relative energy fluctuations 
are caused as the result of un-normalized nature of the second version which, in some cases, limits its application. 
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INTRODUCTION 
 

Generalized Tsallis statistical mechanics has, in recent 
years, received great attention by researchers working on 
such diverse fields as physics, chemistry, astrophysics, 
biology, and engineering. It has been used for predicting the 
phenomena associated with different nonextensive systems 
for which Boltzmann Gibbs (BG) statistics fails [1-11]. In this 
model, entropy is defined as [12]:      

ܵ =
݇

ݍ − 1 (1−෍ ௜ܲ
௤

௪

௜

) 
(1) 
 
 

where, ௜ܲ is the probability of finding the system in the ith 
state, k is a positive constant, and q is the entropic index 
related to the degree of nonextensivity. 

Using different energy constraints in both normalized 
and un-normalized forms, various xpressions may be 
obtained for the probability and, consequently, for the 
partition  function via  maximizing  the entropy  function  in 
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the canonical ensemble. So far, four different energy 
constraints have been used that only one of which (known 
as the 2nd version) is un-normalized [5,12-13]. 
  In this work, the number in different versions of Tsallis 
statistical mechanic refer to choices of the mean energy 
constrains. The first and second versions correspond to 
Tsallis work in 1988, original treatment, [12] and Curado-
Tsallis choice of the mean energy constrain, respectively 
[5]. The third and fourth versions are according to Tsallis-
Mendes-Plastino 1998 [6] and OLM [13] choices for the 
mean energy constrain, respectively. It is well established 
that there are reportedly certain unfamiliar consequences for 
the second or un-normalized versions of the Tsallis 
statistical mechanics [6]. In this work, we will investigate 
the effects of both the un-normalized nature of this version 
and the nonextensivity parameter on energy fluctuations. In 
simple model systems such as the free particle or the 
harmonic oscillator, energy fluctuations are strongly 
dependent on the version as well as the kind of the statistical 
mechanics in which the system is being investigated. One 
important aspect is  the  investigation  of  the  spread  of  the 
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probability distribution about the mean value, which is 
related to the fluctuations. This is because of the basic 
assumption in statistical mechanics that the ensemble 
average of a mechanical property is exactly equal to its 
experimental value. Moreover, the ensemble equivalence is 
established by investigating the fluctuations of different 
properties. A number of statistical thermodynamic theories 
are based on the fluctuations; for example, the formulation 
of the statistical mechanics for transport properties focuses 
on the decay rate of spontaneous fluctuations. Hence, 
studies are reported in the literature that have focused on 
energy fluctuations for an ideal gas and the harmonic 
oscillator in different versions of the Tsallis statistics [14-
16]. For example, an expression was reported in 2003 for 
energy fluctuations in the first version of the Tsallis 
statistical mechanics in which the relative energy 
fluctuations consisted of two terms: the related heat capacity 
and the square of the mean energy. The relative energy 
fluctuations for a system with a large number of particles 
were reportedly small compared to those in the BG statistics 
[16]. 

For the third version, Liyan and Jiulin [15] showed that 
energy fluctuations for an ideal gas with a large number of 
particles would be negligible when 0 < q < 1 and that the 
ensemble equivalence would, hence, be achieved in this 
region of the Tsallis statistical mechanics. The authors also 
reported the relative energy fluctuations related to 1/N in the 
nonextensive statistics rather than 1/√ܰ  in the extensive 
one [15]. 

Investigation of energy fluctuations for an ideal gas in 
both nonextensive (Tsallis) and extensive (Boltzmann-
Gibbs) statistics have also revealed that the correlation 
induced by the nonextensivity of Tsallis entropy has an 
important role in energy fluctuations [14]. It has also been 
claimed that introducing the correlations between particles 
leads to smaller energy fluctuations [14].  

It should be noted, however, that all these studies [14-
16] were carried out on subextensive systems in which q is 
smaller than unity. Additionally, to the best of our 
knowledge, no investigation has been carried out on energy 
fluctuations in the second or fourth  versions of  the Tsallis  
statistics. While our aim in this article is to investigate the 
energy fluctuations in the second and fourth versions, the 
main question is whether the nonextensivity character of the 

 
 
system always leads to smaller fluctuations; more 
specifically, how are energy fluctuations dependent on the 
nonextensivity parameter? 

To find an answer to this question, we first obtained the 
general expression for energy fluctuations in the second 
version of the Tsallis statistics. Although the simple ideal 
gas or harmonic oscillator models are not nonextensive 
systems [17], existence of the exact solution for these 
systems make their thermodynamic investigation useful to 
understand how the Tsallis formalism works.  Therefore, the 
ideal gas and harmonic oscillator were investigated as 
simple textbook examples in the second and fourth versions 
of the Tsallis statistics, for q values smaller and larger than 
unity. It must be noted that the fourth version of the Tsallis 
statistical mechanics is a normalized version. 

The remainder of this paper is organized as follows: In 
the next section, part A, energy fluctuations in the second 
version of the Tsallis statistics will be derived. In part B, 
energy fluctuations in the 2nd and 4th versions of the Tsallis 
statistical mechanics for an ideal gas and a harmonic 
oscillator will be discussed and compared with those in the 
Boltzmann-Gibbs statistical mechanics. Finally, conclusions 
will be presented.  

 
RESULT AND DISCUSSION 

 
Energy Fluctuations in the Second Version of 
Tsallis Statistical Mechanics  
 As already mentioned, the un-normalized and 
normalized energy constrains in the second and fourth 
versions of the Tsallis statistical mechanics have been used 
to obtain the probability in the canonical ensemble. 
Therefore, the different partition functions corresponding to 
these different constraints are: 
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where, superscripts denote the number of the statistics 
versions, ߝ௜ represents the eigen values of the Hamiltonian 
of the system, ܧ௤തതത  is the main energy of the system, 
ߚ = 1/݇ܶ , T is the absolute temperature, and ܼ௤ 
designates the generalized partition function. As is well 
known, all average values in the second version are un-
normalized. Therefore, in this version, a different behavior 
is expected in certain characteristics of the system. For 
example, we know that the energy variance (ܧ߂ଶതതതതത) in the 
normalized statistical mechanics in the canonical ensemble 
is defined as [18]:  
 

 

ଶതതതതതܧ߂ = തܧ) − ଶ(ܧ = ଶതതതതܧ − ܧ
ଶ
                                   

 
 (3) 

 

 

In fact, Eq. (3) may be applied in both the Boltzmann-Gibbs 
statistics and all normalized (1st, 3rd, and 4th) versions of the 
Tsallis statistics. In the second version, however, the square 
root of the energy variance is not equal to the energy 

fluctuations, and  ට(ܧത − ଶ(ܧ ≠ ටܧଶതതതത − ܧ
ଶ

 and തܧ)  −  ଶ  can(ܧ

be calculated as follows: 
 

ଶതതതതതܧ߂ = ଶതതതതܧ − ܧ2
ଶ

+ ܧ
ଶ
෍ ௜ܲ

௤
௪
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(4) 

 The inequality in Eq. (4) is due to 〈1〉௤ ≠ 1. In fact, in 
the second version of the Tsallis statistics, we have [5]: 
 

෍ ௜ܲ
௤

௪

௜

=  ܼ௤ଵି௤ + (1−  ௤തതതܧߚ(ݍ

 
(5) 

Therefore, the following result will be obtained for energy 
fluctuations: 
 
 
ଶതതതതതܧ߂ = ଶതതതതܧ + ܧ

ଶ
ൣܼ௤ଵି௤ − 2 + (1−  ௤തതത൧ܧߚ(ݍ

 
(6) 

In the second version of the Tsallis statistical mechanics, 
 :௤ଶതതതതത is defined asܧ
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The term in the brackets may be rewritten as ܼ௤ ∑ ௜௪ߝ

௜  ௜ܲ. 
Therefore, Eq. (7) can be rearranged as follows: 
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(8) 

 Using the definition of the probability, i.e. Eq. (2), it will 
be possible to write ∑ ௜௪ߝ

௜  ௜ܲ  versus ܧ௤തതത  and  ܼ௤  in this 
version as follows:  
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 Inserting Eq. (9) into Eq. (8), we will have: 
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(10) 

For the second term on the right hand side of the equation, 
we will have:  
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௤ଶതതതതതܧ = ௤തതതܧ ቆ
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and with proper simplifications, we may have: 
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And finally, the following Equation is obtained by 
rearranging Eq. (16): 
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where, the coefficients A and B are as: 
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 Therefore, the energy variance in the second version of 
the Tsallis statistics will be: 
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 As shown in Eq.(19), the expression for the energy 
fluctuations in this version includes three terms. 
Comparison of Eq. (19) with the expressions for energy 
fluctuations in other versions of the Tsallis statistics [14-16] 
and also with that in BG [18] reveals that the first term on 
the right hand side of Eq.(19); i.e. the heat capacity term, is 
a common term in energy fluctuations for all the extensive 
and nonextensive systems of both normalized and un-
normalized versions. The second term on the right hand side 

of Eq. (19) (
డா೜మതതതതത

డఉ
) appears in the energy variance for 

nonextensive systems in the second and third versions of the 
Tsallis statistics. This term has been originated from the 
definitions of the average quantity in a weighted form, ௜ܲ

௤ . 
But the third term on the right hand side ( ܧ௤തതതത

ଶ) appears in 
the first and second versions as has been already reported by 
Potiguar and Costa for the first version [16]. 
 It should be emphasized that the difference between the 
normalized and un-normalized versions arises from the fact 
that ∑ ௜ܲ

௤௪
௜ୀ଴ ≠ 1, as is clear from Eq. (4). This un-

normalized weighted probability, ∑ ௜ܲ
௤௪

௜ୀ଴ ≠ 1, causes the 
coefficient B to appear in the third term of Eq. (19) . 
 When q→1 the coefficients A and B become zero and 
therefore Eq. (19) in the limit q→1 reduces to the 
corresponding equation in the Boltzmann Gibbs statistics: 
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(20) 

In this work the relative energy variance and the relative 

energy fluctuations are defined as 
௱ா೜మതതതതതതത

ா೜തതതത
  and 

ቀ௱ா೜మതതതതതതതቁ
భ
మ

ா೜തതതത
  , 

respectively.  
 In the next section, the effect of the nonextensivity 
parameter on energy fluctuations in both normalized and 
un-normalized versions will be discussed in detail for the 
generalized   ideal gas  and  harmonic  oscillator  cases.  The  
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obtained results will also be compared with the 
corresponding values in BG.  

 
Energy Fluctuations for Generalized Ideal Gas and 
Harmonic Oscillator in the 2nd and 4th Versions of 
the Tsallis Statistics 
 The relative energy fluctuations for the ideal gas in the 
second version of the Tsallis statistical mechanics were 
calculated using Eq. (19). However, in the case of the ideal 
gas, analytical partition functions were available in some 
cases [19], all the data were obtained numerically because 
calculating ܧ௤ଶതതതതത  directly from the partition function is 
impossible. To obtain the required quantities, the following 
partition function was used: 

ܼ௤ = න ф(ܧ) ൤1−1)ߚ− )(ݍ
ܰ
2 ݒ݉

ଶ)൨
ଵ

(ଵି௤)
ݒ݀

௩೘ೌೣ

଴
 

 
(21) 

where, Φ(E) is the degeneracy for an ideal gas velocity [18] 
and ݒ௠௔௫ is the maximum allowed velocity for the ideal gas 
molecules: 

Φ(ܧ) =
1

Γ(ܰ + 1)Γ(3ܰ/2)ቆ
ଶܽ݉ߨ2

ℎଶ ቇ
ଷே/ଶ

 

 
(22) 

௠௔௫ݒ = ቐ
ݍ                            ∞ ≥ 1

2
ඥ21)݉ܰߚ− (ݍ

ݍ  < 1 

 

(23) 

where ܽଷ = ܸ which V is the volume.  
 In Fig. 1, the relative energy variance (REV) and its 
three parts are plotted versus q according to Eq. (19). These 
data were obtained for an argon molecule which is in a 
macroscopic enclosure at T = 300 K. The value of REV in 
the BG statistical mechanics, when q = 1, are also shown in 
this figure. 
 According to this figure, the relative energy fluctuations 
are usually greater than those in BG. In fact, only for a very 
small region around unity, when q is smaller than unity, the 
relative energy variance is less than that in BG. It should be 
noted that REV is used instead of relative energy 
fluctuations because some of the terms in Eq. (19) tend to 
be negative at times. However, the reported REV and 
relative energy fluctuations form two  monotonic  functions.  

 
 
The important point understood from this figure, is the 
domination of the third term of Eq. (19) in REV for 
different values of q except when q→1− (where REV is less 
than its corresponding value in BG). Since the un-
normalized character of this version affects the values of 
this term, it suggests that the greater value of REV for the 
ideal gas, compared to its value in the BG, arises from the 
un-normalized nature of this version. To gain a better 
understanding of the role of the third term in REV, its value 
for a quantum harmonic oscillator in this version was also 
determined by using the partition function for a quantum 
harmonic oscillator in the second version, ܼ௩௜௕,௤ , and Eq. 
(19): 

ܼ௩௜௕,௤ = ෍ ൤1− −1)ߚ (ݍ ൬݊ +
1
2൰ ℎݒ൨

ଵ
ଵି௤

௡೘ೌೣ

௡ୀ଴

 

 

(24) 

where, v is the natural frequency of the oscillator and ݊௠௔௫ 
is the quantum number that can be obtained as follows: 
 

݊௠௔௫ = ቐ
ݍ                                                 ∞ ≥ 1

ݎ݁݃݁ݐ݊݅ ൬
ݍ)ݒℎߚ−2 − 1)

−1)ݒℎߚ2 (ݍ ൰ ݍ  < 1 

 

(25) 

 It should be noted that for q < 1, the partition function 
can be obtained simply by direct summation over a finite 
number of states and that for 1 < q < 2, an analytical 
expression can be obtained for the partition function [20]. 
However, as the case of the ideal gas, all the quantities in 
Eq. (19) for the harmonic oscillator were calculated 
numerically. 
 In Fig. 2, REV and its three parts as in Eq. (19) are 
plotted for the quantum harmonic oscillator and compared 
with the corresponding value in the BG statistics forߚℎݒ =
1.  
 Clearly, REV is smaller than that in BG when q is 
smaller than unity but greater than BG when  
q > 1. It should be noted that the anomalous behavior of 
REV for the harmonic oscillator when q ≈ 0.6-0.7 is related 
to the number of accessible states, ݊௠௔௫, in this region. In 
fact, when q is smaller than unity, a positive probability will 
be gained in this version when the maximum quantum 
number is ݊௠௔௫ = ଶିఉ௛௩(௤ିଵ)

ଶఉ௛௩(ଵି௤)
; therefore, for ߚℎݒ = 1, ݊௠௔௫ 

varies from 3 to 3.83 as a result of q  changing  from  0.6  to  
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Fig. 1. The behavior of the three different terms on                           
            the    right  hand  side  of  Eq. (19)  and   the  
            relative     energy   variance  (REV),  Y,  (all   
            reduced to ܧ௤തതത

ଶ) vs. q for an argon molecule 
                   as an ideal gas at T = 300 K. 

 

 
Fig. 2. The behavior of the three different terms on the right  
           hand   side    of   Eq. (19)   and  the   relative  energy  
           variance  (REV),  Y,  (all reduced to ܧ௤തതത

ଶ) vs. q for a  
quantum harmonic oscillator with hv/kT = 1. 

 
 
0.7. Thus, the number of accessible states in this region will 
be 3. This limitation leads to the anomalous behavior of the 
first and second terms in Eq. (19) for the harmonic oscillator 
versus q, as shown in Fig. 2. Discontinuity in the mean 
energy versus q results in the irregular behavior of REV for   

 
 
the harmonic oscillator. Another point understood from this 
figure is that, contrary to the pervious case of the ideal gas, 
the third term does not play the main role in REV. To 
understand the conditions in which this term will have a 
dominant role in REV, the number of accessible states for 
the two cases of the ideal gas and harmonic oscillator were 
investigated. This is because it is a well established fact that 
energy fluctuations are strongly affected by the number of 
accessible states. 
 In Fig. 3a, the number of accessible states and the three 
dimensional velocity distribution of an argon atom at 300 K 
as an example of an ideal gas are plotted in both Tsallis and 
Boltzmann Gibs statistics. For this purpose, use was made 
of the following expression for the velocity distribution for 
an ideal gas: 

 

(ߥ)ܲ =
ቂ1 − −1)ߚ (ݍ ቀܰ2 ݒ݉

ଶቁቃ
ଵ

(ଵି௤)

ܼ௤
 

 

(26) 

where, Zq is obtained from Eq. (21). It should be noted that 
in the case of the Tsallis statistics the distribution function is 
negative for some velocities when q < 1. This is physically 
not acceptable and, therefore, the distribution function has a 
cut-off. The cut-off velocity in the 2nd version of the Tsallis 
statistics was obtained using Eq. (23). As is clear from Fig. 
3a, the velocity distribution is strongly dependent on the 
value of the entropic index, q, and the range of accessible 
velocities increases with increasing q.  
 Figure 3b displays the number of accessible states for a 
quantum harmonic oscillator in the 2nd version of the Tsallis 
statistics. The cut-off condition for a quantum harmonic 
oscillator in the 2nd version of Tsallis statistics is shown in 
Eq. (25). Again, the number of accessible states depends on 
q and increases with increasing q. However, it should be 
noted that the number of accessible states for the harmonic 
oscillator is much smaller than that for an ideal gas. It seems 
that the role of the third term in energy fluctuations is 
strongly dependent on both the number of accessible states 
and the shape of the probability. This term is, therefore, 
smaller for the harmonic oscillator than that for the ideal gas 
 Based on the above observations, for both ideal gas and 
harmonic oscillator, in the second version when q > 1, the 
value of  REV is greater  than that in BG. This is because, in  
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 Fig. 3a. Comparison       of     the 3-dimensional     velocity      
               distribution of an Argon atom at 300K in extensive  
               and nonextensive statistics (2nd version). 
 
 

 
      Fig. 3b. Comparison    of    the   number   of   accessible  
                   states for a quantum harmonic oscillator in BG           

               and in the 2nd version of the Tsallis statistics. 
 
 
this region, all the three terms in Eq. (19) are involved in 
determining the value of REV. Based on Figs. 1 and 2, the 
behavior observed in this region does not originate only 
from the un-normalized picture of this version although it 
plays an important role. It is clear from Fig. 1, however, that 
the larger relative energy fluctuations for q < 1, compared to 
those in the Boltzmann Gibbs, are mainly due to the third 
term. In the case of the harmonic  oscillator,  the  third  term  

 
 
does not play any significant role in the energy fluctuations, 
because of the lower number of accessible states, and the 
REV value is, therefore, less than that in BG.  
 To further clarify the role of the nonextensivity 
parameter in REV and also to remove the effect of the un-
normalized character of this version, the fourth version was 
investigated with respect to its REV value. In this version of 
the Tsallis statistics, the partition function may be obtained 
from the relation below: 

 

ܼ௤ = න ф(ܧ) ൤1−1)ߚ− )(ݍ
ܰ
2 ݒ݉

ଶ ௤)൨ܧ−
ଵ

(ଵି௤)
ݒ݀

௩೘ೌೣ

଴
 

 

(27) 

where, ܧ௤ = 3/2ܰ݇ܶ is the mean value of energy for an 
ideal gas and its value is only dependent on temperature as 
is also the case in the BG statistics. ݒ௠௔௫ in Eq. (27) should 
be obtained from the following equation: 

 

௠௔௫ݒ =

⎩
⎨

⎧
ݍ                                           ∞  ≥ 1

2

ට21)ߚ − 3ܰ
2 )ܰ݉(1 − (ݍ

ݍ  < 1 

 

(28) 

 In this manner, the partition function for a harmonic 
oscillator in the 4th version of the Tsallis statistics is as 
follows: 
 

ܼ௤ = ෍ [1− (1− +݊))ߚ(ݍ 1/2)ℎݒ − [(௤തതതܧ
ଵ

(ଵି௤)

௡೘ೌೣ

௡ୀ଴

 (29) 

 
where, ܧ௤ is the mean value of the energy for the harmonic 
oscillator and ݊௠௔௫ is obtained from the following equation: 
 

݊௠௔௫ = ቐ
ݍ                                                               ∞  ≥ 1

ቆݎ݁݃݁ݐ݊݅
2− (1− ߥℎ)ߚ(ݍ + (௤തതതܧ2

(1− ߥℎߚ(ݍ ቇ ݍ  < 1 (30) 

 
 It is noteworthy that all the quantities in the 4th version 
must be calculated numerically and iteratively. However, in 
the case of an ideal gas, iteration is not needed in the 
calculations because mean energy is independent of the 
entropic index, q, and the partition function can be obtained 
directly.  The results for the  relative  energy  fluctuations in 
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Fig. 4. Relative energy variance (REV) for an argon atom at  
          300 K and a quantum harmonic oscillator in the 4th  

            version of the Tsallis statistics. 
 
 
 

 
 

Fig. 5. Relative energy variance (REV) versus q for systems  
           with different numbers of Argon atoms  at  300 K in  

            the 4th version of the Tsallis statistics. 
 
 
the case of the argon atom in a macroscopic three 
dimensional box at T = 300 K for the 4th version are shown 
in Fig. 4.  
 As shown in this figure, the relative energy variance will 
be smaller than its corresponding BG value (i.e., 2/3) when 
the entropic index, q, is smaller than unity and it will be 
greater than 2/3 when q is greater than 1. 

 
 
 The relative energy fluctuation for a quantum harmonic 
oscillator in the 4th version of the Tsallis statistics is also 
shown in the same figure. Clearly, the behavior of the 
relative energy variance for the harmonic oscillator is quite 
similar to that for the ideal gas. It may be concluded form 
Fig. 4 that relative energy fluctuations are strongly 
dependent on the value of the nonextensivity parameter via 
the number of accessible states. In fact, compared to the 
extensive system, the nonextensivity parameter in the case 
of subextensive systems causes a lower number of 
accessible states and, therefore, smaller relative energy 
fluctuations are expected. For super-extensive systems, 
however, relative energy fluctuations are greater than those 
in the extensive systems because of their greater number of 
accessible states. 
 One last point of great significance is the relationship 
between relative energy fluctuations and the number of 
system particles, N. In Fig. 5, the relative energy variance 
for an ideal gas with different numbers of particles is shown 
in the 4th version. As already mentioned in Introduction 
[15], the energy fluctuations in the 3rd version of the Tsallis 
statistics depends on 1/N rather than on 1/√ܰ in the BG 
statistics. This means that there are fewer relative energy 
fluctuations in the case of nonextensive systems compared 
to extensive ones. According to Fig. 5, this is true only for 
ݍ < 1 , while for ݍ > 1  as in one-particle systems, the 
relative energy fluctuations of a nonextensive system is 
always greater than those of an extensive one. It is 
interesting that the slope of variations in relative 
fluctuations with q increases with the number of particles in 
the case of a nonextensive system. This could be due to the 
increasing number of accessible states due to the 
dependence of degeneracy, Φ(E), on the number of system 
particles. It is worth noting that the entropic index, q, 
depends on the number of particles, N, for q>1 and that 
when N tends to infinity, q approaches unity [21]; therefore, 
no macroscopic ideal gas exists with ݍ ≫ 1. 
 
 CONCLUSIONS 
 
 In this article, the dependency of relative energy 
fluctuations on the entropic index has been studied for two 
different versions of Tsallis statistical mechanics; namely, 
the second and the fourth versions. It was demonstrated that  
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the degree of relative energy fluctuations is strongly 
dependent on the version in which the systems are being 
investigated. The obtained results of the second version 
show that the un-normalized nature of this version 
essentially affects energy fluctuations. For the cases in 
which the number of accessible states is large, such as an 
ideal gas, the un-normalized picture of this version causes 
an anomalously large fluctuation. Our results also indicate 
an unfamiliar consequence of this version to the effect that 
the un-normalized weighted probability leads in some cases 
to large and anomalous fluctuations. Obviously, the results 
obtained for this version cannot be generalized to the other 
versions due to the un-normalized definition of average 
thermodynamic quantities. It was necessary, therefore, to 
further investigate the situation in a normalized version and 
to compare the results with the corresponding values in 
extensive systems. For this purpose, the fourth version was 
selected since the results in this version are capable of being 
generalized to non-extensive systems in the Tsallis 
statistical mechanics. Our investigations revealed that 
energy fluctuations are strongly dependent on the non-
extensivity parameter via the number of accessible states 
such that the relative energy fluctuations were found to be 
smaller than those in BG when q was less than unity but 
they were greater when q was larger than unity. This result 
is also acceptable for systems with N > 1 particles. In fact, 
the energy fluctuations for sub-extensive systems are always 
smaller than those for extensive ones. However, this will be 
reversed when super-extensive systems are compared with 
extensive one. In other words, introducing a dynamic 
correlation between particles via the non-extensivity 
parameter leads to lower fluctuations in some cases (i.e., q < 
1) while it leads to large ones in others (i.e., q > 1). 
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