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       Analytic expressions were derived for the compressibility factor and residual internal energy of the square-well plus Sutherland fluid. 
In this derivation, we used the second order Barker-Henderson perturbation theory based on the macroscopic compressibility 
approximation in combination with an analytical expression for radial distribution function of the reference hard sphere fluid. These 
properties are expressed in terms of density, temperature, and the potential parameters. Derived equations successfully applied to hard-core 
Lennard-Jones fluid. It is found that the agreement between theory and simulation is quite good for both the compressibility factor and the 
residual internal energy for a wide range of densities and temperature. 
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INTRODUCTION 
 
      Reliable models for the accurate correlation and 
prediction of thermodynamic properties of pure fluids and 
their mixtures are of much demand for process design and 
material handling in the chemical and petroleum industries 
[1-3]. Therefore, these properties have been widely studied 
by both theoretical and computer simulation methods. 
Helmholtz free energy is one of the most important 
thermodynamic properties from which any other derivative 
properties such as pressure, chemical potential and specific 
heat can be derived. An exact and easy to handle expression 
for the Helmholtz free energy with a wide range of validity 
is also very important for chemical engineering applications 
and theoretical tests [4]. The perturbational or variational 
techniques, being the only viable methods, besides the 
Monte Carlo and molecular dynamics simulations are of 
great importance [5]. The perturbation theories include 
those of Barker-Henderson (BH), Weeks-Chandler-
Anderson (WCA), and variational approaches such as 
Mansoori-Canfield  (MC)  and  Rasaiah-Stell  (RS) are most  
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frequently used in the research of thermodynamic properties 
of fluids [6,7]. The main difference among these theories is 
the separation of the interaction potential into reference and 
perturbation and in the criterion for evaluation of the hard 
sphere diameters [7,8]. All the approaches mentioned above 
offer techniques for predicting the thermodynamic 
properties of fluids, given only the interaction potential 
between pairs of molecules in the system and generally 
employ the hard sphere potential as a reference. Robles and 
Haro [9] revised these approaches for Lennard-Jones fluid 
using the hard sphere-fluid as the reference system. Their 
results indicate the correlation between the isotherms in the 
fluid region and the location of the critical point; the second 
order BH scheme yields the best performance compared 
with the simulation data. Also, it is well known that this 
approach has yielded excellent results for pure liquids [10-
14] and liquid mixtures [15-17] with different interaction 
potentials. Therefore, in this study we have preferred second 
order perturbation theory of BH. 
      Perturbation theories  have been successflully applied to 
fluids with molecules interacting by means of a variety of 
potential models, especially spherical potentials with a hard 
repulsion and attractive tail, such as the square-well [18-22],  
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triangular-well [23-26], Yukawa [27-30], or Sutherland 
potentials [31-33], also the soft potentials, such as the 6-12 
Lennard-Jones [34-37] or exponential-six [6,38] potentials. 
They can also be used for nonspherical and polar molecules 
[39]. Paricaud [40] presented a new perturbation scheme 
based on the BH perturbation theory to predict the 
thermodynamic properties for a large variety of potential 
functions. 
      Potential functions, such as hard sphere (HS), square-
well (SW), triangular-well (TW), Sutherland (S) and 
Lennard-Jones (LJ) are known to be empirical in nature, and 
that they can approximate very well the intermolecular 
forces in real fluids [41]. Although it is desirable that a 
model potential function would be able to represent 
intermolecular forces for various kinds of fluids as 
accurately as possible, in a simple mathematical form, it is 
difficult to satisfy these requirements simultaneously [42]. 
Unfortunately, in most cases this can lead to non-analytical 
expressions for the theoreticaly obtained thermodynamic 
properties which reduce their usefulness [23].  
      Nevertheless, there are a few potential functions having 
a form similar to the real spherically-shaped molecules, 
which have been suggested as alternatives to the functions 
mentioned above [1,42-44]. These potential functions are 
generally extended versions of the SW potential function, 
having four or more parameters. The potential function 
considered in this study has a similar shape with those 
mentioned above, but with some advantages over them, due 
to its fewer parameters and simplicity of the mathematical 
form. This potential function, which was first proposed by 
Pollara and Funke [43] and shown in Fig. 1, combines the 
advantages of both the SW and the S potentials; an 
adjustable bowl width, a hard repulsion, and a realistic 
attraction. Pollara and Funke [43] applied this potential 
function to neopentane for the calculation of second virial 
coefficient only. This potential function (SWS) is given by 
the following equations: 
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where  is the hard-core diameter,  is the depth of the well, 

 
              
and  is the reduced well width of the potential and  is 
given by  = ()k. Here, k exponent practically determines 
the effective range of the potential. In this study, we have 
used the value k = 6 which is commonly used in the 
literature. This potential reduces to the Sutherland potential 
for  = 1 and to the square-well potential for  = 0. In spite 
of its simplicity, very little attention has been devoted to the 
SWS potential [45,46]. The second order BH perturbation 
theory was applied to SWS fluid by Boghdadi [45]. He used 
low density expansion form of hard sphere radial 
distribution function (RDF) to calculate the first four virial 
coeffcients and compared his results with TW, SW and LJ. 
In addition, the coefficient of linear density in the expansion 
of RDF in powers of density has also been evaluated by 
Boghdadi in the case of SWS potential [46]. 
      The purpose of this study is to show that any analytical 
calculation based on the SWS potential can be readily 
performed as easily as SW and S potentials and also to 
construct a framework which can be used in the applications 
of real systems. Therefore, in this study, we obtained 
analytical expressions for the equation of state and residual 
internal energy of pure SWS fluids of different widths as a 
function of the temperature, density and k parameter. These 
expressions were derived from the second order BH theory 
in combination with an analytic expression for the RDF of 
the hard sphere reference fluid which was obtained by 
fitting the Monte Carlo simulation data and the numerical 
results of the Percus-Yevick approximation for the first two 
coordination shells by Sun [32]. Because of the lack of any 
theoretical or simulation results relating to this potential, the 
equation of state obtained has been applied to the hard-core 
Lennard-Jones (HCLJ) fluid showing similar behaviour. 
The obtained results are in good agreement with the 
computer simulation data. 
 
PERTURBATION THEORY 
 
      Perturbation theory is a very general approach devised 
to calculate the thermodynamic properties of fluids and 
solids,  giving just the interaction potential between pairs of 
molecules in the system [47]. The basic idea of the 
perturbation theory is to write the pair potential energy u(r) 
of the system as a sum of two terms  
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Fig. 1. Schematic representation of SWS and HCLJ potential functions. 
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where u0(r) is the pair potential of the unperturbed system 
that includes mainly the short-range repulsive contributions 
to the force between the molecules, and u1(r) is the 
perturbation term that includes mainly the attractive 
contributions [48]. For nonpolar molecules, these two 
contributions would be 
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which is just the hard-sphere potential, and 
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respectively. 
      In perturbation theory of fluids, the thermodynamic 
properties at high densities are considered to be determined 
mainly by u0(r), whereas the contributions due to u1(r) are 
considered as a perturbation of formers. Under these 
circumstances, the thermodynamic properties can be 
expressed as a power series in the inverse of the reduced 
temperature, T* = kBT/, where kB is the Boltzmann 
constant. The resudial Helmholtz free energy in the Barker 
and Henderson perturbation theory of fluids truncated at the 
second order is written as [36] 
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where N is the number of molecules in volume V, 
superscrips id and HS stand for ideal gas and hard sphere, 
respectively. The first order term is given by  
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where u1*(r) = u1(r)/ is the potential in units of .  
      By  assuming   that   the   space   is   divided  into  many 

 
 
concentric spherical shells around a central molecule and 
also each spherical shell having large macroscopic volume, 
Barker and Henderson derived out a simple expression for 
the second-order term called the macroscopic 
compressibility (mc) approximation, which is given by [36] 
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where (/p)HS refers to the change in the number density 
with pressure for the reference HS fluid. From the 
perturbative contributions to the free energy, the relevant 
contributions to the residual internal energy and to the 
compressibility factor (i.e. the equation of state) can be 
readily obtained from the following classic thermodynamic 
relationships 
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where  = 3/6 is the packing fraction and  = N/V is the 
particle density. In order to obtain the thermodynamic 
properties of a fluid whose particles interact by means of a 
sphericaly symmetric potential, the BH theory requires 
knowledge of the equation of state and the RDF of a 
reference hard-sphere fluid. For HS fluid, a great number of 
equations of state are available (see extensive reviews [49-
52]). Among them, the most frequently used is the Carnahan 
and Starling (CS) equation of state [9], which combines the 
simplicity and accuracy: 
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      There are several analytical expressions for the RDF of 
a hard sphere fluid [32,53-57]. In this study, we used the 
expression proposed by Sun [32] which is developed in 
terms of a polynomial expansion of nonlinear base function 
and the CS equation of state. The simplicity and precision of  
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his expression is superior to the well-known Pecus-Yevick 
expression. It is expressed in the form of 
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where x = r/ is the radial coordinate reduced to the hard 
core diameter, and gm(x) is given by 
      

      
3

4

0
3

7

0

( ) 1 2
( )

( 256 ) 2 3

n
mn

n
m

n
mn

n

A x x x
g x

B x x x










   

   






                   (12)

            
The values of Amm and Bmm coefficients are given in Ref. 
[32]. Sun [32], applied this expression to develop analytic 
equations of state for S and SW fluids using second order 
BH pertrubation theory and showed that results are in good 
agreement with computer simulation data. Also, he showed 
that the use of the Bmm coefficients made only negligible 
differences for the S and SW potentials. Therefore, we 
ignore Bmm coefficients and consider only the first 
coordination shell (1 < x < 2). 
      Substituting Eqs. (4) and (11) into Eqs. (6) and (7) 
yields 
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where Q is the isothermal compressibility of the reference 
hard sphere system and is given by 
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for the CS equation of state. Lm() and Lm(k) are 
nondimensional auxiliary coefficients introduced by Sun 
[32]. If we adopt the potential function as in the Eq. (4), 
then these coefficients are given by 
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The compressibility factor can be obtained from Eq. (9) in 
the form: 
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First term in the right hand side of this equation is given by 
Eq. (10), and  
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the residual internal energy is derived from Eq. (8) as 
follows: 
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Using these equations, all other thermodynamic quantities 
can be evaluated analytically. 
      Since the expressions obtained here can be reduced 
readily into the equations which correspond to the S and SW 
potentials by taking  = 1 and   = 1, respectively, and these 
special cases are extensively treated by Sun [32], we will 
not give any detailed derivations here.  
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Fig. 2. Compressibility  factor Z = pV/NkBT for HCLJ  fluids as a function of  the  reduced  density * = 3 and  
            reduced temperature T* = kBT/.  Points (black): simulation data from  Ref. [59]; Continuous  lines (grey):  
           from Eq. (20); Dashed lines (green): from Ref. [42]; Dotted lines (red): from Ref. [1]; Dashed-dotted lines  
           (blue): from Ref. [59]. 
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Fig. 2. Continued. 
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APPLICATION TO HCLJ FLUID 
 
      Since, there are not any computer simulation results 
reported in the literature for the SWS fluid, the equation of 
state obtained here has been applied to the HCLJ fluid 
which has demostrated fairly similar behaviour. This 
potential function is shown in Fig. 1, which was firstly 
proposed by Stell and Weis [58] and is given by 
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Sowers and Sandler [59] obtained internal energy and 
compressibility data of this potential by means of Monte 
Carlo simulation and then they have used their results to 
derive two new equation of states based on the perturbation 
theory. Shen and Lu, [1] and Farrokpour and Parsafar [42] 
developed an equation of state for their potential functions 
with four parameters based on the perturbation theory of 
BH, and then applied the expressions obtained to the HCLJ 
fluid. To adopt the expressions obtained in both studies to 
the HCLJ fluids, an analytical method was used to define 
the parameters of potential functions considered in terms of 
the HCLJ potential parameters. However, this method 
allows to determine only two parameters analytically (well 
depth  and steepness of the potential tail ), and the 
remaining two parameters (reduced well width  and hard 
core diameter ) have been kept constant ( = 1.3 ve  = 
HCLJ) in both studies. The  parameter associated with the 
related potential functions used these studies seems to be 
very close to HCLJ (/HCLJ = 0.914). The results obtained by 
using these parameters have been compared with the 
simulation data. 
      In this study, we chose  = HCLJ and  = HCLJ because 
of the formal similarity of SWS potential to the HCLJ 
potential (see Fig. 1) and also considering the results of 
[1,42]. For the value of  parameter, we have taken into 
account the preliminary results of another work in progress 
performed by our group. In that study, the SWS potential 
parameters  have  been  determined  by  means  of  a  fitting  

 
 
procedure to the second virial coefficients and it is found 
that the values of  are in the range of 1.2-1.3 for the noble 
gases such as Ar, Kr and Xe. Thus, an avarege value of   = 
1.23 is used in the calculations. So, the residual internal 
energy and the compressibility factor for the HCLJ fluid 
were calculated using the mentioned values. A comparision 
of the obtained results for the compressibility factor and 
residual internal energy with the computer simulation data 
[59] and with the results of different equations of state 
[1,42,59] are presented in Figs. 2 and 3, respectively. As can 
be seen from Fig. 2 which represents the compressibility 
factor results, all equations are in a good consistency with 
each other at the high temperature region, while deviations 
become apparent as the temperature is reduced. Minimum 
deviation seems to happen for the Eq. (20) in the whole 
temperature range. On the other hand, it is clearly seen that 
all equations give rise to dramatical deviations in the whole 
temperature range except for Eq. (23) in Fig. 3 for the 
residual internal energy results. The main reason of these 
deviations may be the form of the potential functions used. 
At lower temperatures, intermolecular attraction is dominant 
over the repulsion forces and therefore, this part of the 
potential function play an effective role in the equilibrium 
and/or transport properties. The potential functions 
associated with the results given in Figs. 2 and 3 here have a 
finite attraction, while SWS potential shows an infinite 
extension. A finite range means that probable small 
contributions in the long ranges can be neglected, and this 
situation can give rise to dramatical influence on the results. 
Another important factor at this point is the possible 
deficiencies arising from the determination procedure of the 
potential parameters in terms of HCLJ parameters, while, 
for SWS potential, one  does not encounter  such a situation.  
Considering all the results obtained in this study, it seems 
that the equations given here are reliable and correct. 
  
CONCLUSIONS 
 
      We showed that it is possible to obtain analytical 
expressions for the thermodynamic properties of SWS fluid 
from a second order Barker-Henderson perturbation theory. 
The expressions derived here may be of interest for several 
reasons. First, due to their analytical character, they require 
less  computational  effort  than  other  procedures  and  it is  
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Fig. 3. Residual internal energy for HCLJ fluids as a function of the reduced density * = 3 and  reduced  
            temperature * = 3. Points (black): simulation data from Ref. [59]; Continuous  lines (grey): from  
            Eq. (23); Dashed lines (green): from Ref. [42]; Dotted lines (red): from Ref. [1]; Dashed-dotted lines  

                    (blue): from Ref. [59]. 
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Fig. 3. Continued. 
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easier to perform some mathematical operations such as 
derivations or integrations over them. The second is that 
they might be useful to obtain the corresponding properties 
of fluids with more complicated intermolecular potentials 
such as the LJ or HCLJ potential provided that the 
parameter ,  and  of the SWS potential are suitably 
chosen. Furthermore, Eq. (20) might be used to analytically 
represent the equation of state of simple real fluids, by 
treating the parameters of the SWS potential as adjustable 
parameters. A further work with this potential is now in 
progress for investigating the properties of elementary 
gases. 
      In summary, the SWS potential is more realistic than 
those of SW, TW and S potentials. Also it can be applied as 
easily as the other potentials such as LJ, and therefore we 
believe that this potential function will take the place of 
other potential functions and will be successful for the 
application in real systems.  
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