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 An alumina supported Co/Ni catalyst was prepared by sol-gel procedure to study the catalytic behavior during Fischer-Tropsch 
synthesis in a fixed-bed reactor. The effect of CO conversion (10-50%) on hydrocarbon product distribution (CH4, C5+ and C2-C4 olefin 
selectivities) was studied. Selectivity for CH4 decreased, while those of C5+ and olefin selectivities increased with increasing CO 
conversion. The catalysts properties were characterized at different stages using powder X-Ray Diffraction (XRD), Brunauer-Emmett-
Teller (BET) surface area measurements, and Scanning electron microscopy (SEM). A neuro-fuzzy model called locally liner model tree 
(LoLiMoT) was applied to predict the catalytic behavior during Fischer-Tropsch reaction over the Co/Ni/Al2O3 catalyst. The predicting 
system was established on CO conversion values as a target based on three variables, including partial pressure of CO and H2, and H2/CO 
feed ratios as the input. To evaluate the generalization performance of the system, the k-fold cross validation was applied so that an 
excellent prediction was observed with mean square error (MSE) which equals 7.4211e-004. Finally, the extrapolation ability of LoLiMoT 
was perused (beyond the training range). The obtained data from LoLiMoT were compared with the experimental data, and the results 
indicated that LoLiMoT is a worthy system modeling with high capability for data prediction, both within and beyond the training range. 
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INTRODUCTION 
  
 Regarding the growth in the rate of energy consumption, 
there is a worry about encountering the shortage of energy 
sources in the future. Then, one of the most challenging 
problems of modern world is to find a suitable substitute for 
oil sources. In this field, Fischer-Tropsch (F-T) synthesis is 
an effective pathway to produce the fuel using coal and 
natural gas [1]. The critical determinants of product 
distribution are the process variables such as temperature, 
pressure, gas flow rate, and H2/CO feed ratio [2]. 
Unfortunately, despite the F-T synthesis benefits in fuel 
producing, the process is very costly. Therefore, seeking to 
find advantages methods to decline experimental cost will 
improve the economic strategies. Combination of industry 
with computer sciences could be a beneficial way to  reduce 
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time and finance cost due to experiments [3]. In order to get 
useful information from the experimental data and convert 
this to valuable knowledge, an effective data mining 
technique such as artificial neural networks (ANN), or 
neuro-fuzzy (NF) model should be employed. Several 
successful applications of neural network modeling have 
been reported for the data sets obtained by conventional or 
high throughput experimentations for various catalytic 
systems [4-9]. One of the most significant discussions on 
predicting the result for real reactions is data prediction 
beyond training range (extrapolation). Unfortunately, 
because of the standardization of inputs and outputs that is 
required to run ANN, a problem arises in extrapolation: if 
the training data set does not contain the maximum possible 
output value, an unmodified network will be unable to 
synthesis this peak value. Therefore, the confidence in the 
ANN model can be greatly enhanced if some methodology 
could be found for prediction beyond  the  training  range of 
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the calibration and verification procedure in addition to the 
available measured data sets. The present study focuses on 
developing a model for data prediction in F-T process 
beyond the training range. 
 The k-fold cross-validation is one of the most common 
performance estimation methods [10] that the system is 
trained multiple times in order to measure the performance 
of each parameter combination. In a k-fold cross-validation, 
the training data are randomly split into k non-overlapping 
segments (the folds) of approximately equal sizes: k-1 
samples are used as training sets and the remaining sample 
is used as validation set [11].  
 In this research, a Co/Ni/Al2O3 catalyst was prepared by 
sol-gel procedure for synthesis of light olefins in F-T 
synthesis in a micro fixed-bed reactor. Afterward, an 
algorithm was developed based on the so-called NF model 
of LoLiMoT to predict of the catalyst activity in F-T 
synthesis over Co/Ni/Al2O3 catalyst. The LoLiMoT method 
was investigated as a predictor that can predict data in the 
range of the experimented conditions (i.e. interpolation). 
Then, the LoLiMoT extrapolation ability (data prediction 
beyond training range) was studied for data prediction 
during F-T process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
EXPERIMENT AND METHODS 
 
Catalyst Preparation 
  An 80%Co/20%Ni/15%Al2O3 catalyst was prepared by 
conventional sol-gel method. Aluminum triethylate 
Al(OC2H5)3 (1.23 g) dissolved in 2 ml ethanol with 
vigorously stirring at 60 °C. Co(NO3 )2.6H2O (17.31 g) and 
Ni(NO3)2.6H2O (4.29 g) were dissolved in 5 ml ethanol and 
added into the solution with vigorously stirring at 60 °C. 
After stirring for 30 min at 60 °C, 2 ml nitric acid 65% was 
added drop wise to the mixture. Finally, the solution was 
hydrolyzed by adding a H2O/C2H5OH (15/10 ml/ml) 
mixture. The solution was stirred to gel over approximately 
3 h. Then, the sample was stirred at 120 °C for 16 h to give 
transparent monolithic gel. The catalyst was calcined at 600 
oC for 6 h. 
 
The Methodology of Catalyst Testing 
 A schematic representation of the experiment setup is 
shown in Fig. 1. The experiments were carried out in a fixed 
bed tubular stainless steel micro reactor. In every 
experiment one gram of catalyst is put in the reactor. Before 
starting every experiment, the catalyst is reduced by the  use  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Schematic representation of the reactor in a flow diagram used. 1-Gas cylinders, 2 Pressure regulators, 3- 
           Needle  valves, 4-Valves, 5-Mass  FlowControllers  (MFC),  6-Digital   pressure  controllers,  7-Pressure  
          gauges, 8-Non return valves, 9-Ball valves, 10-Tubular furnace,  11-Temperature indicators,  12-Tubular  
           reactor   and   catalyst   bed,   13-Condenser,  14-Trap,   15-Air pump,   16-Silica   gel   column,   17-Gas  
          Chromatograph  (GC),  18-Mixing  chamber,  19-BPR:  Back  Pressure  Regulator  (Electronically type),  

              20-CP (Control panel). 
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of N2 and H2 gases. After reduction is done, the temperature 
of the oven is set to the experiment and when the 
temperature reaches the desired point for the experiment the 
CO valve is opened and the flow ratio of feed gases is set by 
the control panel. After 8 h, the gas chromatograph (GC) is 
turned on and the gas products are measured to obtain the 
percent of CO conversion. The catalysts were extremely 
fine particles so intraparticle diffusion could be neglected. 
The gas hourly space velocity (GHSV) increased to the 
value in which the CO conversion was almost the same for a 
variety of catalyst weight indicating that external diffusion 
can be neglected above this GHSV.  Hence, the kinetic 
experiments were conducted free from internal and external 
mass transfer limitations.  
 
Locally Linear Model Tree (LoLiMoT) 
 The local linear neuro-fuzzy (LLNF) network is 
depicted in Fig. 2. It is based on a dived-and-conquer 
strategy. LoLiMoT algorithm provides a simple, fast, and 
deterministic model which has low number of trial-and-
error steps for system identification. It has been introduced 
as a local linear model (LLM) algorithm [12,13] and can be 
regarded  as  a radial   basis  function  that  the  output  layer  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
weights are replaced with a linear function of the network 
inputs (Fig. 2). Each neuron realizes an LLM and an 
associated validity function, and determines the region of 
validity of the LLM [12]. It is an incremental tree-
construction algorithm that partitions the input space by 
axis-orthogonal splits. In iteration, a new rule or LLM is 
added to the model. Thus, LoLiMoT belongs to the class of 
incremental or growing algorithms [14]. Also, there is the 
validity loop (upper levels) during iteration that determines 
the parameters for nonlinear partitioning of the input space 
(structure) and the inner loop (lower levels) that estimates 
the parameters of those LLMs [15]. The validity functions, 
which are similar to basis functions in RBF and could be 
Gaussians, are normalized such that for any input u, 
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i i , and the output of this model is computed as: 
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where the LLMs and the validity functions depend on 
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puuuu ][ 21   as input of the model and p is number of 

the dimension of the model input.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. local linear Neuro-fuzzy model architectedfor Co-Ni/Al2O3 catalyst. 
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This network simply interpolates linear hyper-planes, which 
are used to approximate the functions locally, by nonlinear 
neurons called validity function. A choice for validity 
function is normalized Gaussians. If these Gaussians are 
furthermore axis-orthogonal the validity functions are  
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The coordinates of the center cij and standard deviations σij 
as the hidden layer parameters of the ANN are nonlinear 
network parameters and each weight wij as the j-th local 
weight of the linear system i is a linear parameter. Each 
Gaussian function in Eq. (4) performs as a membership 
function with input vector u for the locally linear model. 
The global parameter vector contains m(p+1) elements: 
 
 w ][ 0110211101 pmmp wwwwwww               (4) 
 
And the associated regression matrix X for N measured data 
samples are: 
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Therefore: 
 
 ŷ = X ŵ        ,        ŵ = (XT X)-1X T y                              (7) 
 
The input space is decomposed to axis orthogonal style 
yielding hyper-rectangles which centers of Gaussian 
membership functions μi(u) are placed. The standard 
division of these Gaussians is set to 0.157 of the length of 
their rectangles in each dimension. 

 
 

 ijij k                                                                     (8) 
 
 157.0k                                                                      (9) 

 
where ∆ij denotes the extension of the hyper rectangle of 
local model i in dimension uj . kσ has been found by trial and 
error method that 0.157 has the best accuracy from other 
values. The LoLiMoT algorithm is classified as follow: (1) 
start with an initial model: start with a single neuron, which 
is a global linear model over the whole input space with 

1)(1 u  and set m =1. If there is a priori input space 

partitioning, it could be used as the initial structure; (2) find 
the worst LLMs: calculate a local loss function e.g. sum 
square error (SSE) for each of the i =1,...,m LLMs, and find 
the worst performing neuron; (3) check all divisions: the 
worst LLM is considered for further refinement. The hyper 
rectangle of this LLM is split into two halves with an axis 
orthogonal split. Divisions in all dimensions are tried, and 
for each of the p divisions the following steps are carried 
out: (a) construction of the multi-dimensional validity 
functions for both generated hyper rectangles; (b) 
construction of all validity functions; (c) estimation of the 
rule consequent parameters for newly generated LLMs; (d) 
calculations of the loss function for the current overall 
model; (4) find the best division: the best of the p 
alternatives, checked in step 3, are selected and the related 
validity functions and LLMs are constructed. The number of 
LLM neurons is incremented (m = m + 1); (5) test for 
convergence: if the termination condition is met, then stop, 
else go to step 2. 
 
Statistical Parameters 
 Three statistical parameters, R2, MSE and standard 
deviation, were used to interpret the accuracy of the model. 
The coefficient correlation (R2) is calculated from following 
equations: 
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The second one is mean square error (MSE) which is 
defined by Eq. (12)   
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Also, the Standard Deviation is measured as: 
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exp

iCO,X and cal
iCO,X indicate the experimental (target) and 

calculated (output) CO conversion values, respectively, and 
N clarifies the number of input patterns.  
 
RESULTS AND DISCUSSION 
 
Catalyst Characterization 
 The  XRD  technique  performed for calcined (before the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
test) is shown in Fig. 3. Scans were taken with a 2θ range 
from 0 to 70° to identify the actual phases of 
80%Co/20%Ni/15wt%Al2O3 catalyst .The actual phases 
identified for calcined catalyst were NiCo2O4 (fcc), NiO 
(rhombohedral) and Co3O4 (fcc) which were crystallized 
with diffraction peaks at 18.5, 23.5, 31.3, 36.9, 44.8, and 
59.4o. Here to be noted that, oxidic phases are highly 
selective for the preparation of olefins. 
 The SEM observations have shown differences in 
morphology of precursor and optimal calcined catalysts 
(before and after the reaction). The electron micrograph 
obtained from catalyst precursor depicts several larger 
agglomerations of particles (Fig. 4a) indicating that this 
material has a less dense and homogeneous morphology. 
After the calcination at 600 ºC for 6 h, the morphological 
features are different from the precursor sample and show 
that the agglomerate size is greatly reduced compared to the 
precursor (Fig. 4b). It may be due to cover the calcined 
catalyst surface with small crystallite of cobalt and nickel 
oxide.  However,  the  size  of  these  grains  grew  larger by  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. XRD pattern of calcined sample for the 80%Co-20%Ni/15wt% Al2O3 catalyst. 



 

 

 

Nikparsa et al./Phys. Chem. Res., Vol. 3, No. 1, 78-88, March 2015. 

 83 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
agglomeration in the tested catalyst (Fig. 4c), which may be 
due to the sintering after reactions. 
 The BET surface area, pore volume and average pore 
diameter of catalysts are tabulated in Table 1. As seen in 
this table, the catalyst precursor has a higher specific 
surface area (57.13 m2 g-1) than that in the calcined catalyst 
before (49.24 m2 g-1) and also after the test (19.82 m2 g-1). 
The obtained results in Table 1 show that there is no big 
variation among average pore size diameters of the catalyst 
in different stages of precursor and calcined samples (before 
and after the test). The high specific surface area of calcined 
catalyst before the test allows a high degree of metal 
dispersion [16]. 
 
The Effect of CO Conversion on the Products 
Selectivity 
 The effect of CO conversion on product distribution 
over a Co/Ni/Al2O3 catalyst was studied in a fixed-bed 
reactor  at  a  wide  range of operational condition (T = 200- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Effect of CO conversion on the FT product  

                    selectivities. 
 
 
250 oC, P = 1-10 bar, H2/CO = 1-4 and GHSV = 6000 h-1. 
Figure 5 illustrates the effect of CO conversion on 
selectivities (CH4, C5+ and C2-C4 olefin) and shows that 
methane selectivity decreased (26-14%)  as  CO  conversion  

 

Fig. 4. The SEM observations of precursor and optimal calcined catalysts. 

 
                Table 1. BET Results of the Precursor and Calcined Catalysts (before and after the Test)  
                               Containing 80%Co/20%Ni/15wt%Al2O3 Prepared with Sol-Gel Procedure 
 

Catalyst Specific surface area 
(m2 g-1) 

Pore volume 
(cm3 g-1) 

Pore size 
(Aº) 

Precursor  57.13 3.91 × 10-2 27.35 
Fresh calcined 49.24 2.23 × 10-2 28.28 
Used calcined 19.82 1.46 × 10-2 28.15 

 



 

 

 

A Neuro-Fuzzy Algorithm for Modeling of Fischer-Tropsch Synthesis/Phys. Chem. Res., Vol. 3, No. 1, 78-88, March 2015. 

 84 

 
 
increased (10-50 %), whereas C5+ and C2-C4 olefin 
selectivities increased with increasing CO conversion. 

 
LoLiMoT Development 
 LoLiMoT algorithm was established to predict CO 
conversion values as the target while appointing three 
variables namely partial pressure of CO (

COP ), partial 
pressure of H2 (

2HP ) and H2/CO feed ratio as the system 

input.  
 In the present study, by employing four-fold cross 
validation the data were partitioned into four equally sized 
segments (eight data in each segment). Four iterations of 
training and validation were performed during each of 
which; a different fold of the data was held-out for 
validation while the remaining three folds were used for 
training. To this end, 75% of the data was used to train the 
system and test its accuracy on the remaining 25% (Fig. 6). 
The MSE and the standard deviation values (7.4211e-004 
and 5.5157e-004, respectively) proved that LoLiMoT shows 
a good ability for data prediction in this study. The curve 
plotted in Fig. 7 shows the error reduction process due to 
the rise in a number of neurons in the training process. The 
range and the type of the input and output variables are 
summarized in Table 2. It is necessary to be noted that the 
system is trained in the given range in Table 2. LoLiMoT 
has been used as a predictor in both the range of the 
experimental conditions (interpolation), and outside of 
training ranges (controlled extrapolation). The algorithm 
was also implemented by MATLAB. 
  As previously explained, the system was trained with 32 
data in the given range in Table 2 to study the ability of 
LoLiMoT for data prediction within the trained range. The 
data was obtained in the following operational conditions: 
total pressure 1-10 bar; Temperature 200 oC; H2/CO feed 
ratios 1-3 and GHSV = 3000 h-1. The results are depicted in 
Fig. 8 (a). The obtained results indicate a good agreement 
between the experimental and predicted CO conversion 
( 0.99  R²  ). 
 The predictions were tested for the data within the 
trained range. In addition, the correlation between the 
derived data from output of the system and experimental 
data of CO conversion are illustrated in Fig. 8 (b). 
Regarding Fig. 8 (b),  the LoLiMoT  predicted  data  were in  

 
 
the perfect agreement with experimental data ( 0.93  R²  ). 
Therefore, this system could be employed for estimating the 
required data which were in the gained laboratory ranges 
but not experimentally available.  
 Data predicted beyond the training range (extrapolation) 
is a reliable and economical process of taking data. The data 
values at the given range and estimation value beyond the 
given range will always be necessary in real reaction for 
industry. However, just predicting based on the training data 
is not enough; we were to study the extrapolation ability of 
the model. The algorithm of controlled extrapolation has 
been illustrated in Fig. 9 and classified in the following 
steps: 
a) Repeat the algorithm until the desirable number of data in 
a specific range is achieved.   
b) Train LoLiMoT by all existing data samples as the input 
data.  
c) Extrapolate the new data that has the closest range to the 
train data set (input data set).  
d) Set the new input vector with the extrapolated data (step 
III) and existing data samples.  
To achieve this purpose, two data sets for two steps (so-
called extrapolation 1 and extrapolation 2) were selected to 
investigate the LoLiMoT ability for predicting data beyond 
the training range. Herein, as the same as interpolation step 
in predicting CO conversion values, obtained at following 
operational condition: T = 200 oC, P = 1-10 bars, H2/CO = 
3/1-3.5/1, GHSV = 3000 h-1, the system was trained with 32 
data in the specified range in Table 2 (extrapolation 1). This 
trend was continued until the desirable number of data in a 
specific range, adaptable to experimental data, was 
achieved. Consequently, in this section, 13 new estimated 
data have been achieved by controlled extrapolation. These 
results are shown in Fig. 10. Results indicate a good 
correlation between experimental and theoretical data (R² 
>0.86).  
 Then we developed our study in the extrapolation 
(extrapolation 2) by LoLiMoT (i.e. H2/CO = 4). The 
experimental data was obtained at following operational 
condition: T = 200 oC, P = 1-10 bars, H2/CO = 4, GHSV= 
3000 h-1. Here, system was trained with 32 mentioned data 
as the same as the previous step and predicted data was 
extracted for H2/CO = 4. The obtained results in the training 
step indicate a  good  agreement  between  the  experimental  
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Fig. 6. Four-fold cross-validation. 

 

 
Fig. 7. Convergence curve in learning process by training data. 
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Fig. 9. Controlled extrapolation algorithm. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10. Experimental vs. predicted CO conversion values   

       for the extrapolation (1) data using LoLiMoT. 

                                       Table 2. Used Variables Range in Modeling Analysis 
 

  Range 

Input variables COP (bar) 0.15-3.00 

 
2HP (bar) 0.30-4.50 

 H2/CO feed ratio 1/1-3/1 
Output  CO conversion (%) 10-50  

 

                 
Fig. 8. Experimental vs. predicted CO conversion values for the training (a) and interpolation (b) data using LoLiMoT. 
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and predicted CO conversion. Among training step, 
LoLiMoT has the excellent accuracy with the correlation 
coefficient (R2 > 0.99). Therefore, for predicting the CO 
conversion values, LoLiMoT is a suitable system modeling. 
The Eq. (14) (based on Fig. 8a) is the corresponding 
correlation coefficient using LoLiMoT in the training step. 
 

2645.0)(981.0)(  LoLiMoTonCOconversicorronCOconversi                                                                                            
                                                                                          (14) 
 
where, the )(LoLiMoTonCOconversi  indicates the 

predicted CO conversion values for the training step by 
using the LoLiMoT. 
Finally, the correlation Eq. (14) containing the empirical 
parameters, i.e., slope and intercept in Eq. (14) was used to 
determine the CO conversion values of the investigated 
range. Table 3 shows a good agreement between the 
experimental and the predicted CO conversion values by 
LoLiMoT of investigated range in F-T process. 
 
CONCLUSIONS 
  
 An alumina-supported cobalt nickel catalyst was 
prepared using sol-gel procedure, and it showed the high 
ability for light olefins synthesis in F-T process. The 
catalyst was characterized using XRD, SEM and BET 
surface area techniques, and it was concluded that the 
operating conditions had a marked effect on the morphology 
and texture of the catalysts. The obtained result from the 
investigation on the effect of CO conversion on product 
distribution  showed  that  CH4   selectivity    monotonically 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
decreased, but C5+ and C2-C4 olefin selectivities increased 
with increasing in CO conversion. LoLiMoT algorithm was 
designed for predicting the CO conversion in the F-T 
synthesis. A Cross-validation technique was employed to 
assessment the performance of the system. The values of 
MSE (i.e. 7.4211e-004) and the standard deviation 
(5.5157e-004), indicated that LoLiMoT had an excellent 
accuracy for prediction of CO conversion over the 
mentioned catalyst in F-T process. It was also shown that 
LoLiMoT could predict data in the range of the 
experimental data (interpolation step) successfully, with a 
high accuracy from the trained model. The extrapolation 
ability of LoLiMoT was studied with a novel idea so-called 
controlled extrapolation. The results exhibited that predicted 
CO conversion values have a good agreement with the 
experimental data. In addition, this algorithm can be used in 
order to save time and to reduce the costs of experimental 
study of F-T reaction.  
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