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      In this paper, the deactivation of the iron-based catalyst was assessed in the presence of Zr, Mn, and Cr promoters at two different loadings 

(5 and 10%). ANN/GPLE hybrid technique was applied for model determination and parameter estimation, as well as calculation of catalyst 

stability in the following conditions: temperature = 280 °C, H2/CO = 2, and pressure = 1.8 atm. The results showed that the promoter loading 

could change the deactivation behavior of the iron catalyst such that the first-order GPLE model well fitted the results at a promoter loading 

of 5%. For the case of 10% loading, the second-order GPLE model well fitted the results. A decline in the promoter loading on the iron 

catalysts enhanced the catalyst stability and decreased its deactivation constant (kd). The promoter loadings of 5% and 10% indicated coking 

and sintering mechanisms, respectively. Among the different promoters at various loadings, Mn promoter at the loading of 5% could 

significantly prolong the catalyst lifetime and enhance the stability of the iron catalyst. Zr increased the deactivation constant of Fe catalyst 

(kd) more than other promoters. ANN/GPLE technique is a promising method for the catalytic deactivation investigation, model 

determination, and parameter estimation. 
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INTRODUCTION 
 

      International predictions in 2018 have estimated a 50% 

increase in the global fuel generation for transportation 

supply by 2040 [1]. The rising energy consumption and its 

impact on greenhouse gas emission, shortage of resources, 

and global warming have increased awareness of renewable 

sources of energy [2,3]. Among the renewable sources of 

energy, biomass energy covers a wide range of sources. 

Biomass gasification is a promising thermal process in which 

biomass can be converted into gas. This gas can then be used 

to produce valuable chemicals through the Fischer-Tropsch 

process [4]. Fischer-Tropsch synthesis (FTS) has attracted 

the  interest  of  researchers  as  a  promising  route   for   the  
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production of ultraclean transportation fuel [5,6]. Various 

metals such as Fe, Co, Ni, and Ru can be employed in this 

reaction as the active phase [7,8]. Iron catalyst has been 

regarded as a catalyst with high olefin selectivity and low cost 

with superior resistance against poisons in the synthesis gas 

[9]. The high activity of the water-gas shift of iron catalyst 

encourages its application in cases where the syngas is 

produced from coal or biomass [10]. In addition to proper 

function (activity and selectivity), industrial catalysts should 

exhibit strong resistance against deactivation. In this regard, 

studies on the deactivation of iron catalysts are necessary to 

achieve catalysts with a longer lifetime [11]. In the early 

1920s, various deactivation mechanisms were studied in 

FTS; however, some controversies remained concerning the 

major reasons for catalyst deactivation [12]. Mimura et al. 

studied  the  effect  of  the  support  performance on the iron  
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oxide catalysts, the effect of the co-precipitation method on 

alumina oxide catalyst preparation, and the elimination and 

deactivation of the catalyst by CO2 [13]. Understanding the 

selectivity, activity, and deactivation of the FTS catalyst is of 

significant industrial and scientific importance. Jiang et al. 

assessed the effect of supports and promoters in the FTS to 

achieve better reaction performance [14]. Rytter et al. also 

investigated the selectivity and activity of Co-based catalysts 

with Ni or Ru promoters on alumina, silica, and titanium 

support in the FTS [15]. 

      Artificial neural network (ANN) has found extensive 

applications in the field of catalysis. ANN can be employed 

in studying the deactivation of catalysts, including methanol 

transformation into hydrocarbons [16]. Razmjooie et al. 

examined the impact of pressure, temperature, and feed ratio 

in the FTS by the design of experiment (DoE) and neural 

network in a fixed-bed reactor with mathematical models and 

experimental data [17]. Ghofran Pakdel et al. used the ANN 

method to study the effect of Ni loading on the deactivation 

model of Ni/Al2O3 catalyst in the FTS [18]. The simulated 

data were modeled by RSM and ANN, and results were 

compared with the random experimental data and DOE 

findings [19]. Ghofran Pakdel et al. employed an ANN 

strategy for model determination to describe the deactivation 

behavior of Fe/γ-Al2O3 catalyst [20]. By simulating the data 

beyond the experimental range, ANN can accelerate the 

determination of the deactivation model. Moreover, thanks to 

predicting the catalyst behavior beyond the empirical 

domain, this network is a proper technique to predict the 

behavior of expensive catalysts in the long run. In this regard, 

the present study uses a combined approach (ANN/GPLE) to 

assess the effect of Mn, Cr, and Zr promoters and their 

different loadings on the deactivation model and stability of 

the iron-based catalyst, using the data reported in literature 

[21]. 

 
ARTIFICIAL NEURAL NETWORK 
 

      Studies on brain structure have recently gained 

considerable popularity. This interest has resulted in the 

development of artificial neural networks (ANN) for solving 

complex problems. ANN can be used for the prediction and 

optimization of each process, especially multi-variable 

functions and nonlinear systems. The application of  ANN is  

 

 
more common than the other modeling approaches; this 
network employs data optimization to find the best outputs 
[22]. 
      ANN belongs to a class of mathematical models in which 

the architecture relies on the concept of neuron. In an ANN, 
inputs can be generally linked to the outputs by a 
transformation function through converting them into 
neurons with specific weights. Each neuron acts as a small 
computational engine which receives and processes the input 
and transforms it into the output [23]. Evaluation of the ANN 

implies the determination of its ability to present an 
acceptable solution to new inputs (not included in the training 
process). The performance of the ANN simulation can be 
evaluated by regression analysis of the empirical data and the 
network outputs. The lower the mean square error, the better 
the training of the input in the training section and the more 

precise the solutions. ANN can be explored to determine the 
activity of the catalyst in long run and select the deactivation 
model. The low prediction error of ANN for all the data 
confirms its reliability for estimating the activity of catalysts 
during an extended time of the stream. 
 
EXPERIMENTAL 
 
Catalyst Preparation 
      The catalysts were prepared using the precipitation 
technique according to (100-x)Fe/xMe/5Cu/17Si formula 
(Me: Cr, Mn, Zr, x < 20). In summary, a solution containing 
Si(OC2H5)4, Fe(NO3)3 and CuN2O6:2H2O was precipitated by 

a third metal Mn(NO3)2, (Cr(NO3)3 or ZrO(NO3)2) for 
Fe/xMe/5Cu/17Si(100-x) using NH4OH at 83 °C until 
reaching the pH of 8-9. The precipitates were then aged and 
cooled down for 17 h, followed by washing with deionized 
water and drying at 110 °C for 18-24 h. The products were 
finally calcinated at 300 ℃ for five h under an air atmosphere. 

More details on the synthesis procedure can be found 
elsewhere [21]. 
 
Reactor Test 
      To assess the intrinsic effects of deactivation on the 
parameters of GPLE model, the operating conditions were 

chosen according to the previous works [24,25] to minimize 
the effects of heat and mass transfer [21]. The reaction was 
conducted in a quartz micro-reactor (internal diameter of           
8 mm). The sample (35-100 mg) was reduced at 280 ℃ under 
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hydrogen flow with a rate of 30 cc min-1 for 2 h. Before the 

reaction, He gas (30 cc min-1) was employed for 15 min to 

clean the catalyst at  the constant pressure and temperature 

(1.8 atm and 280 ℃, respectively). Catalyst activity was 

examined in the Fischer-Tropsch reaction at 280 ℃ and  1.8 

atm with the feed ratio of 2:1 (H2/CO). The products were 

analyzed by gas chromatography (Varian 3700) equipped 

with the FID and TCD detectors to analyze hydrocarbons and 

CO and CO2, respectively. More details can be found 

elsewhere [21]. 

 
RESULTS AND DISCUSSIONS 
 
ANN Performance for 90Fe10Cr Catalyst 
      The training stop process was investigated to reach the 

minimum error gradient for the 90Fe10Cr catalyst. The ANN 

results indicated 1.7727 × 10-7 minimum gradient error in the 

24th training period, which shows the network convergence. 

The training factor (μ) was 1 × 10-9 at the end of the 24th 

training period. The best performance of the validation data 

was obtained in the 18th period with a mean square error of 

7.58 × 10-6. 

 

ANN Performance for 95Fe5Cr Catalyst 
      The training stop process was investigated based on 

reaching the minimum error gradient for the 95Fe5Cr 

catalyst. At the end of the 26th training period, the minimum 

gradient error and μ were 3328 × 10-6 and 1 × 10-8, 

respectively, indicating the network convergence. The best 

performance of the validation data was obtained in the 20th 

period with a mean square error of 1.0868 × 10-5. 

 

ANN Performance for 90Fe10Zr Catalyst 
      The training stop process in the ANN was utilized based 

on reaching a minimum gradient error in the 35th training 

period for a 10% Zr promoter. The results showed that at the 

end of the 35th period, the gradient error was 4.0963 × 10-6 

while μ was 1 × 10-10. Constant network error after the 35th 

period indicates its convergence. The best performance of the 

validation data was calculated in the 29th period as 

99.9234 × 10-6. 

 

ANN Performance for 95Fe5Zr Catalyst 
      The  training  stop  process to  reach  minimum  gradient 

 
 
error in the case of 95Fe5Zr showed the gradient error of 

1.6663 × 10-5 in the 15th period, reflecting the network 

convergence. At the end of the 15th period, μ was 1 × 10-9. 

The best performance of the validation data was obtained in 

the 9th period as 1.1164 × 10-5. 

 

ANN Performance for 90Fe10Mn Catalyst 
      Gradient variation, mean square error, and regression 

analysis of the data for 90Fe10Mn catalyst indicated proper 

accordance of the regression curves for training, test, and 

validation data as well as all the empirical ones with the 

network outputs. In the training stop process, the minimum 

gradient error was 1.0946 × 10-5 attained in the 55th period, 

indicating the network convergence. At the end of the 55th 

period, μ was 1 × 10-8. The best performance of the 

validation data was calculated in the 49th period, with a mean 

square error of 8.1887 × 10-6. 

 

ANN Performance for 95Fe5Mn Catalyst 
      The training stop process was investigated for the 

95Fe5Mn catalysts to reach the minimum gradient error. The 

results indicated that after the 17th period, the gradient error 

got a constant value of 8.9035 × 10-6, reflecting the network 

convergence. Moreover, μ was 1 × 10-7 at the end of the 17th 

period. The best performance of the validation data 

(1.4086 × 10-5) was obtained in the 11th period. 

 

Catalyst Deactivation Models 
      Modeling is a combination of mathematical, physical, 

and chemical concepts to describe a phenomenon or process 

via simulating a system. Determination of the optimal 

parameters of a process is one of the major advantages of the 

simulation. The deactivation model is based on the 

mathematical description of a catalyst to facilitate the 

analysis of its stability and rate variations. The mathematical 

models of deactivation are a precise method to predict the 

activity of the catalysts to design and simulate the reactor 

performance. The issues regarding the deactivation of the 

catalysts play a decisive role in the process design. The 

deactivation phenomenon is inevitable, as its examination 

can result in finding proper kinetics to decline the adverse 

impacts.  

Equation (1) can be used to calculate the deactivation rate of 

catalyst (rd): 
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      Deactivation rate =
ୖୟ୲ୣ ୭୤ ୰ୣୟୡ୲୧୭୬ ୟ୲ ୟ୬୷ ୲୧୫ୣ

୍୬୧୲୧ୟ୪ ୰ୣୟୡ୲୧୭୬ ୰ୟ୲ୣ
                     (1) 

 

     
dt

da
r d

                                                                                             (2) 

 

      The deactivation rate depends on the reaction 

temperature, reaction rate constant (kd), and activation 

energy. It also depends on the (a-a*) parameter in which “a” 

shows the activity, while “a*” denotes the activity for infinite 

reaction duration. Pd also represents the partial pressure of 

deactivation compounds. 

 
      ),( ddd pafkr                                                                            (3) 

 

GPLE model provides a proper form for the deactivation 

phenomenon. It tends to a limit value for long durations: 

 

        aapk
dt

da
r n

ddd
                                         (4) 

 

As the dependence of the deactivation rate to the partial 

pressures of CO and H2 was lower than its dependence on the 

activity and temperature, pk
n

dd can be substituted by "
dk . β 

shows the deactivation order which can be used for fitting the 

data. For β = 1, GPLE is a first-order equation. 
 

        aak
dt

da
r dd

"                                               (5) 

 

In Eq. (5), β shows the deactivation order; while a  and 
"
dk  

represent the activity in long durations and deactivation 

constant, respectively. 
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      tkaaa d
"11 )1()1()(                                            (8) 

 

          1

1

"1 ])1()1[(1 tkaaa                                                                            

                                                                                                      (9) 

 
 
        atkaa d )exp()1(1 "                            (10) 

 

Deactivation Behavior of the Catalysts 
      Figure 1 shows the activities of the iron catalyst 

containing 5% promoters (Cr, Zr, and Mn). All of the 

catalysts had rapid and slow deactivation steps during the 

time of stream. Cr- and Zr-promoted catalysts rapidly 

deactivated in the first stage. During the first 50 min, 40% 

activity drop was observed for the Zr- and Cr-promoted 

catalysts. For Mn, the catalytic behavior declined with a 

milder slope over time. After 200 min, the activity trended to 

a constant value. 

      Figure 2 shows the deactivation behavior of the iron 

catalyst with a 10% promoter (Cr, Zr, and Mn). The number 

of stages of the activity drop and the slops of graphs are the 

same as the case for 5% promoter loadings. Sharper activity 

drops were observed during the fists 200 min. However, for 

the Cr- and Zr-promoted catalysts, 40% activity drop 

occurred during the first 25 min. As can be observed, the iron 

catalyst with the Mn promoter showed delayed deactivation 

compared to the other two promoters. This hypothesis can be 

further investigated by simulating the catalyst deactivation. 

A comparison between Figs. 1 and 2 shows the influence of 

the type and loading percentage of promoters on the activity 

drop  during  the  reaction.  Regarding  the  limited  time  of 

 

 

 
Fig. 1. Deactivation rate of the iron catalyst containing 5% 

Cr, Zr, and Mn [21]. 

- 
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Fig. 2. Deactivation rate of the iron catalyst containing 10% 

Cr, Zr, and Mn [21]. 

 

  

experimental studies, the long-term catalyst activity was 

assessed using ANN. 

      In the Fe-based catalysts, the Fe3O4 phase may convert to 

iron carbides. Therefore, catalyst conversion rises during the 

reorganization of Fe-based catalysts, due to the activity of 

these phases in the FTS [26]. The formation of Fe3O4 by the 

oxidation of these carbides declines the activity of the 

catalyst during the on-stream procedure [27]. 

      In this study, the onset of the deactivation study involved 

the pseudo steady-state condition (maximum point), where 

conversion did not rise during the on-stream time. Moreover, 

the ANN results demonstrated a decline in the activity for a 

long-time on-stream process, confirming the deactivation 

phenomenon. Depending on the operating conditions and 

catalyst composition, the on-stream time for approaching the 

steady-state conditions varied for different catalytic systems. 

Eliason et al. examined the deactivation kinetics of the 

promoted and un-promoted iron catalysts for a short-time 

stream (9 h) in the FTS [24]. Monzón et al. studied the 

relationship between the kinetic parameters of different 

catalyst deactivation models during 200 min of TOS [28]. 

 
Determination of the Proper Deactivation Models 
      To determine the appropriate deactivation model, the 

values obtained  from  the  models were  compared  with the  

 

 
Table 1. a Parameter Obtained by the Hybrid ANN/ 

GPLE Technique 

 

ANN
a  

GPLE2 
a  

GPLE1   
a  

Catalyst 

0.23 0.216 0.3 90Fe10Cr 

0.26 0.228 0.315 90Fe10Zr 

0.34 0.3 0.427 90Fe10Mn 

0.31 0.168 0.322 95Fe5Cr 

0.32 0.226 0.337 95Fe5Zr 

0.42 0.3 0.457 95Fe5Mn 

 

 

ANN results (Table 1), and the best model was determined 

for each promoter. 
      According to Table 1, for the case of 90Fe10Cr, a
value was equal to 0.3 in the first-order GPLE model, while 

for the second-order GPLE model, the amount of this 

parameter was 0.216. ANN predicted 0.23 for this parameter. 

According to ANN results, the second-order GPLE model 
was more appropriate as its a was closer to the actual 

value. 
      In the case of 90Fe10Zr, a value was 0.315 and 

0.228 using the first and second-order GPLE models, 

respectively. The prediction of ANN was 0.26. According to 

ANN results, the second-order GPLE model was more 
appropriate as its a was closer to the actual value. The 

same results hold for the case of 90Fe10Mn. Therefore, the 

second-order GPLE model is more significant for the iron 

catalysts, including 10% promoters (Cr, Zr, and Mn). 
      According to Table 1, for the case of 95Fe5Cr, a
value was 0.322 and 0.168 by the first and second-order 

GPLE models, respectively. The prediction of ANN was 

0.31. Therefore, the first-order GPLE model was more 
appropriate as its a was closer to the actual value.  

      Considering 95Fe5Zr, a value was 0.337 and 0.226 

by the first and second-order GPLE models, respectively. 

The prediction of ANN was 0.32. Therefore, the first-order 
GPLE model was more appropriate as its a was closer to 

the actual value. These results hold for the 95Fe5Mn catalyst 

as well. Thus, according to ANN results, the first-order 

GPLE model is more suitable for the catalysts containing 5% 

promoters (Cr, Zr, and Mn). 
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      Based on the obtained results, the second-order GPLE 

model was better for the catalysts containing 10% promoters, 

while the first-order one was more appropriate for the 

catalysts containing 5% promoters. Coking [29] and sintering 

[30] deactivation are usually well fitted by the first-order           

and second-order GPLE, respectively. Consequently, the 

promoter loadings of 5% and 10% indicated coking and 

sintering mechanisms, respectively. 

 

Model Validation 
      To validate the determined models, the predicted values 

were compared with the new data. Tables 2-4 present the 

validation results. 

      As seen, the data predicted by the second-order 

deactivation model well matched with the data related to the 

catalysts containing 10% promoter. Whereas, the first-order 

model offered proper fitting for the catalyst with 5% 

promoter. 

 
Effect of the Promoter on the Parameters of the 
Deactivation Models 
      Table 5 lists the parameters of deactivation models for 

iron  catalysts  containing 10 and 5% promoters (Cr, Zr, and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mn). Regression analysis was based on the Levenberg-

Marquardt algorithm which can be employed for nonlinear 

problems. Kd is the deactivation constant. The higher the 

deactivation constant, the sooner the catalyst deactivation. 

      Based on Table 5, the deactivation constant of the 

samples with 5% and 10 % promoters were compared 

considering the first-order and second-order GPLE models, 

respectively. 

      For various promoter loadings, the Zr promoter increased 

the deactivation rate of iron catalysts. A comparison of the 

steady-state activity of the catalysts with varying promoter 

content indicated that the iron catalysts containing Mn 
promoter had higher stability. For 5% loading of Mn, a
value was 42% based on ANN prediction. Its 10% loading 

resulted in 0.34 activity; therefore, the steady-state activity of 

5% Mn was higher. 

 
CONCLUSIONS 
 

      Catalyst deactivation plays a destructive role in           

many industrial applications. This phenomenon and its 

environmental consequences are among the serious 

challenges   of   industry;    since   halting   the  process  and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Validation of the Second-order GPLE Model for 90Fe10Cr and First-order GPLE Model Validation for 95Fe5Cr 

 

 Activity (90Fe10Cr) Activity (95Fe5Cr) 

Run  Experimental Model  Experimental Model 

1  1 1  1 1 

2  0.866 0.869  0.909 0.932 

3  0.746 0.775  0.783 0.844 

4  0.632 0.667  0.668 0.665 

5  0.542 0.492  0.605 0.608 

6  0.453 0.416  0.526 0.536 

7  0.403 0.374  0.474 0.459 

8  0.363 0.347  0.423 0.419 

9  0.328 0.328  0.379 0.393 

10  0.323 0.314  0.379 0.366 

11  0.298 0.302  0.352 0.350 

12  0.284 0.293  0.336 0.340 

13  0.279 0.286  0.324 0.335 

14  0.254 0.28  0.316 0.330 
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Table 3. Validation of the Second-order GPLE Model for 90Fe10Zr and First-order GPLE Model Validation for 95Fe5Zr 
 

 Activity (90Fe10Zr) Activity (95Fe5Zr) 
Run  Experimental Model  Experimental Model 
1  1 1  1 1 
2  0.833 0.863  0.871 0.917 
3  0.731 0.767  0.742 0.811 
4  0.626 0.686  0.658 0.69 
5  0.572 0.564  0.569 0.563 
6  0.521 0.475  0.505 0.476 
7  0.439 0.416  0.445 0.418 
8  0.397 0.375  0.406 0.388 
9  0.358 0.351  0.366 0.368 
10  0.327 0.334  0.366 0.356 
11  0.327 0.319  0.346 0.348 
12  0.307 0.309  0.336 0.344 
13  0.272 0.300  0.317 0.341 
14  0.264 0.293  0.316 0.339 

 
 
Table 4. Validation of the Second-order GPLE Model for 90Fe10Mn and First-order GPLE Model Validation for 95Fe5Mn 

 
 Activity (90Fe10Mn) Activity (95Fe5Mn) 

Run  Experimental Model  Experimental Model 
1  1 1  1 1 
2  0.904 0.933  0.946 0.939 
3  0.778 0.832  0.838 0.875 
4  0.707 0.696  0.788 0.814 
5  0.619 0.607  0.707 0.704 
6  0.556 0.555  0.617 0.619 
7  0.523 0.519  0.576 0.569 
8  0.498 0.494  0.536 0.531 
9  0.464 0.47  0.531 0.512 
10  0.46 0.453  0.5 0.493 
11  0.43 0.44  0.491 0.482 
12  0.41 0.429  0.455 0.472 
13  0.414 0.419  0.446 0.467 
14  0.41 0.414  0.445 0.464 

 
 
  Table 5. Effects of Promoters on the Parameters of Deactivation Models 

 
R2

adj R2 kd a  Order Catalyst 

0.984 0.985 0.0457 0.216 2 90Fe10Cr 
0.98 0.981 0.05 0.228 2 90Fe10Zr 

0.992 0.993 0.023 0.3 2 90Fe10Mn 
0.991 0.991 0.016 0.322 1 95Fe5Cr 
0.972 0.973 0.018 0.337 1 95Fe5Zr 
0.994 0.995 0.014 0.457 1 95Fe5Mn 

 
767 



 

 

 

Zohdi et al./Phys. Chem. Res., Vol. 11, No. 4, 761-770, December 2023. 

 

 

replacement or reconstruction of the catalyst in the reactor 

can be a costly stage. ANN can adequately determine the 

deactivation model and estimate the activity of the catalyst in 

the long run. This study assessed the effects of promoter type 

and loading percentage on the activity and stability of Fe-

based catalyst that was synthesized by the precipitation 

technique. The results obtained by the hybrid ANN/GPLE 

technique indicated the influence of the promoter loading on 

the deactivation model of the iron catalyst. For the iron 

catalyst containing 10% promoter, the second-order GPLE 

model could reasonably predict the results, while for the iron 

catalyst including 5% promoter, the first-order GPLE model 

performed better in fitting with empirical data. For various 

promoters, Zr increased the deactivation constant, while Mn 

promoted the long-term performance of the catalyst. The 

steady-state activity of the catalysts containing 5 and 10% 

Mn was 0.42 and 0.32, respectively. Therefore, the iron 

catalyst containing a 5% promoter had higher stability. 

Compared to Zr and Cr, Mn promoter could play a decisive 

role in prolonging the catalyst lifetime and enhancing its 

activity. Validation analysis demonstrated that the 

ANN/GPLE hybrid technique could adequately predict the 

steady-state activity of the catalyst during on-stream time. 
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