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  We have used a variational approach to calculate some thermodynamic properties of the quasi-one dimensional liquid 
3He such as the energy, entropy, free energy, equation of state and heat capacity at finite temperature. We have employed the 
Lennard-Jones potential as the inter-atomic interaction. We have seen that the total energy increases by increasing both 
temperature and density. As expected, it is seen that the entropy decreases by increasing density and decreasing temperature. 
There is no minimum point in the free energy curve, showing that there is not any bond state for the quasi-one dimensional 
liquid 3He. The results of our calculations indicate that the equation of state of this system becomes stiffer as the temperature 
increases. Our results for the specific heat show that there is not any lambda transition for this system. 
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INTRODUCTION 
 
 Helium has two stable isotopes, one with mass number 4 
and the other with mass number 3. The first one is available 
as helium gas or liquid from the atmosphere or gas wells, 
while the second one is extremely rare in nature and has 
bean only available commercially since 1950 [1]. 
 Liquid 3He is particularly suited to study the correlation 
among the strongly interacting many-body fermionic 
systems. Several approaches have been used for 
investigating the properties of liquid 3He. These are mainly 
based on the Singwi, Tosi, Land and Sjölander (STLS) 
scheme [2], mott localization [3], spin fluctuation theory 
[4], Green’s function Monte Carlo (GFMC) [5], 
nonperturbative renormalization group equation [6], 
nonlocal density functional formalism [7], correlated basis 
functions CBF [8], and Fermi hyper-netted chain (FHNC) 
[9]. Recently, a Japanese group have verified 3He atoms in a 
narrow tube at zero temperature applying the Monte Carlo 
method [10]. They have calculated the ground  state  energy  
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of this system at zero temperature for the cases in which the 
tube has the radius of order 1 nm. 
 In recent years, we have studied the bulk properties of 
the normal and polarized 3He at zero and finite temperatures 
[11-21]. In these calculations, the lowest order variational 
method based on the cluster expansion of the energy 
functional has been used. This method is fully self-
consistent, since it does not introduce any free parameter to 
the calculations. Very recently, we have used the lowest 
order variational method to calculate some ground state 
properties of two-dimensional liquid 3He at zero 
temperature [22]. 
 In the present work, we study the quasi-one dimensional 
liquid 3He. Quasi-one dimensional liquid 3He system can be 
produced by injecting the 3He atoms into a nanotube. Here, 
we intend to calculate some thermodynamic properties of 
this system at finite temperature using a variational method 
employing the Lennard-Jones pair potential [23]. 
 
Method 
 Our quasi-one dimensional system contains 3He atoms 
confined in a very long  cylinder  with  radius  about  a = 10  
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nm. Our calculations have been carried out for the number 
density (number of particles per unit length,  = N/L) in the 
range 0.001-0.01 nm-1 at the temperatures in the range 1.0-
4.0 K. For computing the thermodynamic properties of such 
a system, first we must calculate its internal energy. For this 
purpose, we use the lowest order variational method.  
 
Lowest Order Variational Method Formalism 
 The lowest order variational method is a variational 
many-body technique based on the cluster expansion of the 
energy functional [24],  
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 where E1 is the one-body cluster energy, E2 is the two-body 
cluster energy, and etc. We consider the energy of the 
system up to the second term in the cluster expansion, and 
ignore the higher order terms [25]. 
 The one-body energy is as follows,  
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 is the Fermi-Dirac distribution function. In the above 
equation, ε(k) is the single particle energy, β = 1/kBT and  
is the chemical potential. For each density and temperature, 
the chemical potential can be obtained using the following 
constraint,  
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The two-body energy has the following form,  
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In the above equation, V(r) is the inter-particle potential and 
f(r) is the two-body correlation function. 
 
Lowest Order Variational Method Calculations for 
Quasi-one Dimensional Liquid 3He 

 Now, we are going to obtain the energy of quasi-one 
dimensional liquid 3He using the relations introduced in the 
above section. 
 To calculate the one-body energy (E1), we use Eq. (2) in 
which the single particle energy (ε(k)) for the cylindrical 
coordinates is approximately written in terms of effective 
mass, as follows  
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where a is the radius of cylinder, k = πν/L is the single 
particle wave vector, and X10 is the first root of J0 (J0 is the 
zeroth order Bessel function) [26]. Here, ν is the quantum 
number corresponding to the energy eigenvalue. In fact, we 
use a quadratic approximation for single particle potential 
incorporated in the single particle energy as a momentum 
independent of effective mass. We introduce the effective 
mass, m*, as a variational parameter [27]. 
 For calculating the two-body energy, we use Eq. (5). 
Since we intend to calculate the energy of quasi-one 
dimensional liquid 3He, we consider the following single 
particle wave function for the system, which is the result of 
Schrödinger equation for a cylindrical box, 
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 Where ρ and z are cylindrical coordinates, A is the 
normalization factor, and γ10 = X10/a. By inserting Eq. (8) 
into (5), and doing some algebra, we get the following 
relation for the two-body energy per particle,  
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To calculate the two-body energy, at first, we must compute  
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ω(12) (Eq. (6)). Here, we employ the Lennard-Jones 
potential [23] as the helium-helium interaction,  
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where ε = 10.22 k and σ = 0.2556 nm. We also consider the 
following two-body correlation function,  
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 where  = (,T) is a density and temperature dependent 
form variational parameter. We have chosen this correlation 
function because when r goes to zero, the correlation 
function should approach to zero and when r goes to 
infinity, the correlation function should approach to unity. 
For each value of density and temperature, we minimize the 
two-body energy with respect to the variation in the  
parameter. 
 Finally, thermodynamic properties of the system is 
obtained from the free energy, F = E - TS, where  
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 is the entropy of system. As mentioned in the previous 
section, the effective mass has been considered as a 
variational parameter. Therefore, we minimize the free 
energy with respect to the variation in the effective mass, 
then we obtain the chemical potential and the effective 
mass. This minimization is carried out numerically. 

 
RESULTS AND DISCUSSIONS  
 
 We have shown the one-body energy per particle (E1) vs. 
density in Fig. 1 for various temperatures (1.0-4.0 K). As 
seen, E1 increases by increasing both density and 
temperature. However, this energy is more sensitive to the 
variation of temperature. From our numerical results, it is 
found that the slope of energy curve decreases as the 
temperature increases. 
 In Fig. 2, we have plotted the two-body energy per 
particle (E2) as a function of density at T = 1.0-4.0 k. We 
can see that the interaction energy increases by increasing 
the density, while it decreases by increasing the 
temperature. The total energy per particle (E = E1 + E2) has 
been shown in Fig. 3. We see that the total energy increases 
by increasing both  density  and  temperature.  Here, we can  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. One-body energy per particle vs. density at different temperatures (T). 
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conclude that the increasing of one-body energy (E1) by 
temperature (Fig. 1) dominates the decreasing of two-body 
energy (E2) by temperature (Fig. 2), leading to the increase 
of total energy by increasing the temperature. 
 Using Eq. (12), we can find the entropy per particle for 
the system. In Fig. 4, the  entropy  versus  density  has  been  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
presented at different temperatures. As known, for any 
system, the entropy should be reduced by increasing the 
density, and increased by increasing the temperature [28]. 
Figure 4 shows that this is consistent with our result. 
 The free energy per particle versus density for various 
temperatures   (1.0-4.0 K)  has  been  shown  in Fig. 5.  This  

 

 
Fig. 2. Two-body energy per particle vs. density at different temperatures (T). 

 
 

 
Fig. 3. Total energy per particle vs. density at different temperatures (T). 
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figure shows that free energy increases by increasing the 
density, while it decreases by increasing the temperature, 
especially at low densities. We also see that there is no 
minimum point in the free energy curve. This indicates that 
there is no bond state for this system. As seen from Fig. 5, 
at  low  densities,  the free energy increases very  rapidly by 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
density, especially at higher temperatures. As seen from 
Figs. 3 and 4, at a fixed temperature, by increasing the 
density, the internal energy increases, while the entropy 
decreases, therefore this leads to the increasing of free 
energy by increasing the density. This behavior of free 
energy is very considerable at low densities. 

 
Fig. 4. Entropy per particle vs. density at different temperatures (T). 

  
 

 
Fig. 5. Free energy per particle vs. density at different temperatures (T). 
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 Now, we are in a position to find the pressure of the 
system using the following relation,  
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 In Fig. 6, we   have  presented  the  pressure  of  the  system  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
versus density (equation of state) for temperatures (1.0-4.0 
K). We see that the pressure increases by increasing both 
density and temperature. This indicates that the equation of 
state of system becomes stiffer as the temperature increases. 
We also see that the difference of pressure for different 
temperatures is substantial at high densities. 
 Finally, we have calculated the specific heat  at  constant  

 
Fig. 6.  Pressure vs. density at different temperatures (T). 

 
 

 
Fig. 7. Specific heat vs. temperature for different densities (ρ). 
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volume (Cν) of our system from the internal energy,  
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We have given the specific heat versus temperature for two 
values of density ( = 0.005 and 0.01 nm-1) in Fig. 7. This 
figure shows that the specific heat increases by increasing 
both temperature and density. We know that a fermionic 
system does not have a lambda transition in its specific heat 
diagram, and the specific heat should increase by increasing 
the density for such a system. Figure 7 shows that our 
results obey this physical criteria. We also see that as the 
temperature approaches zero, the specific heat for all 
densities goes to zero. 

 
SUMMARY AND CONCLUSIONS 
 
 In this paper, we have considered a quasi-one 
dimensional liquid 3He at finite temperature. Our system 
contains N 3He atoms confined in a very long cylinder with 
radius 10 nm. Thermodynamic properties of this systen have 
been verified using the variational method based on the 
cluster expansion of energy. First, we have calculated the 
one-body (E1) and the two-body (E2) energies, then the total 
energy (E = E1 + E2) has been obtained. Our results show 
that the one-body energy increases by increasing both 
temperature and density, while the two-body energy 
increases by density,and decreases by increasing 
temperature. The total energy has a similar behavior with 
one-body energy (E1). In fact increasing of one-body energy 
by temperature dominates the decreasing of two-body 
energy by temperature. We have also calculated entropy of 
the system, which increases by temperature and decreases 
by density. It is found that the free energy increases by 
density and decreases by temperature. We also see that there 
is no minimum point on the free energy curve which means 
that there is not any bond state for the system. We have 
computed the equation of state for the system, showing that 
the equation of state becomes stiffer as the temperature 
increases. Here, the specific heat at constant volume has 
been also calculated. Our results do not show any lambda 
transition for the quasi-one dimensional liquid 3He. 
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