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      In this work, an electrolyte-UNIQUAC model was developed by replacement of Boltzmann weight binary interaction parameters by the 
nonextensive Tsallis weight. A summation of the long-range electrostatic term (Debye-Huckel equation) and a short-range interaction term 
were considered in the calculation of thermodynamic properties. A framework proposed by Chen et al. was employed for the derivation of 
the local mole fractions. Application of the nonextensive theory increased the degree of freedom of the present model (T-E-UNIQUAC). 
Furthermore, the strength of the model lies in its ability to calculate individual activity coefficients of ions. The applicability of the T-E-
UNIQUAC model were tested using aqueous electrolyte solutions, and subsequently, results were compared with Messnaoui, Chen and 
Pitzer models.  
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INTRODUCTION 
 
      The Boltzmann-Gibbs statistical mechanics (BG) is not 
applicable to systems that are not in the thermodynamic 
limit. This is due to the finite size of the system, the 
existence of long-range interactions, and the presence of 
dissipative structures [1]. Nonextensive statistical 
thermodynamics proposes a new formalism for 
characterisation of the systems which are not properly 
described by Boltzmann-Gibbs statistical mechanics. Tsallis 
introduced the concept of nonextensive entropy as [2-7], 
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where pi is the probability of the microscopic state i , W      
is  the  total number of microstates, q  is  the entropic  index,  
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and k is a positive constant. The entropic index q is a 
measure of the degree of nonextensivity in the system 
explained by the following pseudoadditivity rule: 
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In this equation systems A and B are independent variables, 
and 0qS  . Consequently, superextensivity, extensivity, and 

subextensivity are the cases related to q < 1, q = 1, and       
q > 1, respectively. In the limit 1q   of the Eqs. (1) and 

(2), the Boltzmann-Gibbs entropy and extensivity rule are 
respectively recovered as:  
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where   kB    is   Boltzmann’s   constant.    It   is   worthwhile  
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mentioning that the constant, k, in Eq. (1) differs from kB, 
but in the limit q = 1, it reduces to kB = k. In the 
microcanonical ensemble, the probability of all microstates 
are equal and, thus pi = 1/W. This concept simplifies Tsallis’ 
entropy to 
 
      lnq qS k W                         (5) 

 
where ln q  is q-logarithm defined as 1 1ln
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      It is reasonable to introduce the inverse function of q-
exponential as 
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Boltzmann weight displays exponential tails while Tsallis 
weight presents power law tails which is long-lasting and 
vanishing for q > 1 and q < 1, respectively. A new concept 
of nondistributive q-deformed algebra has been introduced 
based on the q-exponential and q-logarithm functions [9, 
10]. Furthermore, reading for comprehension of some 
properties of q-functions and q-algebra is recommended at 
[11-14], and references therein. 
      In other words, the extensivity (additivity) and 
intensivity concepts in thermodynamics are applied to the 
homogeneous systems  with weak interactions, and the 
thermodynamic limit of ( , )N V   or / finiteN V  . The 

notion of nonextensive statistical mechanics was introduced 
to overcome the limitations of Boltzmann-Gibbs statistical 
mechanics. This formalism is suitable for the study of the 
systems with long-range interactions as well as small 
systems, or systems with complex behavior, including 
nanosystems [15]. 
      Some research studies have validated the application of 
Tsallis' entropy to complex systems. Cohen has successfully 
related the microscopic dynamics to the entropic index [16]. 
In another research, conducted by García-Morales and 
Pellicer [17], fractal phase space systems have been studied, 
and the entropic index has been referred to the fractal 
dimensions  of  the  available  phase   space.  Consequently,  

 
 
Tsallis’ entropy has found its platform in modern statistical 
mechanics.  
      Souza et al. replaced the ordinary product by a new 
nonquadratic mixing rule between species by means of the 
q-product of mole fractions [18]. They applied q-product for 
generalization of van der Walls mixing rules, and validated 
their proposal by evaluating vapor-liquid equilibrium at 
different temperatures.  
      In this study, the nonextensive Tsallis weight is applied 
rather than Boltzmann weight, and thus, nonextensive 
statistical mechanics propose a theoretical basis for 
derivation of the UNIQUAC model for electrolyte solutions. 
On this account, the Gibbs free energy of electrolyte 
solutions has been developed based on Tsallis entropy 
function.  
 
Thermodynamic Model 
      The basis of the present thermodynamic model is the 
modification of the original UNIQUAC model [19] by 
addition of Debye-Huckel term and replacement of 
Boltzmann weight by the nonextensive Tsallis weight. 
Consequently, the proposed model has three fundamental 
terms: a combinatorial or entropic term, a residual or 
enthalpic term, and an electrostatic term. As a result, the 
excess Gibbs energy consists of a long-range electrostatic 
term along with a short-range interaction term. The 
electrostatic interaction between ions is regarded in long-
range term while non-electrostatic interactions are 
accounted in the short-range term. Moreover, this paper 
deals with a single completely dissociated liquid electrolyte 
and a single solvent. It is evident that the procedure can be 
generalized for multicomponent electrolyte system. The 
UNIQUAC model is employed to describe the short-range 
term, while Debye-Huckel equation depicts the long-range 
term, 
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Thus, i  can be derived as: 
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The Long-range Contribution 
      The Debye-Huckel model [20] is the fundamental model 
in electrolyte solutions that accounts for the long-range ion-
ion interactions. The excess Gibbs energy in this model can 
be written as: 
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where xw and Mw are mole fraction and molar mass of water, 
respectively. A and b are the Debye-Huckel parameters, and 
I is the ionic strength defined as: 
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Consequently, partial molar differentiation of  E

DHg  leads to 

activity coefficient of water, 
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Moreover, the activity coefficients for the ions are: 
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The Short-range Contribution 
      Combinatorial term. Although we are dealing with an 
electrolyte solution, the combinatorial term is identical to 
the one used in the traditional UNIQUAC thermodynamic 
model. The combinatorial or entropic term is defined as [1]: 
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where

i i iX C x ,
i iC Z  for ions, and 1iC  for solvent, z is 

the coordination number and is equal to 10, 
i  and 

i  are 

volume fraction and surface area fraction of component i, 
respectively, 
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where ri  and qi are volume and surface area parameters for 
component i , respectively. 
      Therefore, by partial molar differentiation of 
combinatorial excess Gibbs energy, the activity coefficients 
are derived as [19] 
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Residual term 
       Chen et al. [214,22] stated the existence of three types 
of cells. The first type has a solvent molecule (m) as its 
center, while other solvent molecules, anions (a) and cations 
(c) are in its immediate neighborhood. For this type of cell, 
the local electroneutrality assumption is valid. The other 
two types of cells either have a central cation or anion with 
solvent molecules and ions of opposite charge in the 
immediate neighborhood. For these two cells the like-ion 
repulsion assumption is valid; thus no ions of like charge 
exist near each other (i.e. 0cc aa   ). Thus, local mole 

fractions can be written as: 
 

      
1   (central solvents cells),

1            (central anions cells),
1            (central cations cells),

cm am mm

ma ca

mc ac

  
 
 

  

 
 

                      (16) 

 
where Ɵij 

is the local surface fraction of component i  
around the central  j  molecule.  
      The effective local surface areas with component i  as 
the center are given by 
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where Ɵji and Ɵki are the effective local surface area of 
species j and k  around the central component i, 
respectively. Hji,ki is defined as: 
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where 

j ih and 
kih are the enthalpies of interaction between 

j i  and k i , respectively, and T is the absolute 
temperature. Besides, we assumed that

ij jih h  which 

corresponds to the fact that interaction enthalpies are 
symmetrical. Combination of Eqs. (16) and (17) leads to: 
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In order to obtain the residual molar Gibbs energy, E

resg , we 
relate it to the residual molar excess enthalpy, E

resh with the 

following expression: 
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Consequently, the analytical expression for E

resg is obtained 

as (see Appendix) 
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where exp ( )i

i q

c
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
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 . Thus, it can be inferred that: 

 
      

1 , 2 , 3 , 4 ,;    ;     ;     .am mm cm mm ma ca mc acH H H H         

                     (22) 
 
It should be noted that 

1  and 
2 , 

3 and 
4  can be related to 

each other. It is performed by the following analysis. Local 

 

electroneutrality assumption around solvent molecules’ cell 
leads to 
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Division by 

mm  and replacement of Eq. (17), it results in 
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Moreover, surface area fractions, 

a  and 
c ; can be 

substituted using Eq. (14). Therefore, it can be simplified to 
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Since, 

a a c cn Z n Z , the above equation can be written as 
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Thus, it can be generalized to 
 
      

, , 1 2.c c
am mm cm mm

a a

q qH H
q q

                        (27) 

 
As the interaction enthalpies are symmetric, the same 
expression can be concluded for 

,ma caH  and 
,mc acH  
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Substitution of the above expressions in the excess Gibbs 
energy and partial differentiation can result in the activity 
coefficients of the species in the solutions. The result for the 
cation is: 
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and for the anion: 
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and for the solution: 
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RESULTS AND DISCUSSION 
 
      Combining the residual activity coefficients (Eqs. (29), 
(30) and (31)) with the Debye- Huckel (Eq. (11) for solvent 
and Eqs. (12) for ions) and combinatorial term (Eqs. (15)) 
leads to the derivation of the activity coefficients of ions 
and solvent. Furthermore, the Debye-Huckel parameter for 
aqueous electrolyte system in Eq. (11) is calculated by the 
following expression: 
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For evaluation of the applicability of the proposed model, 
the sum of squares of the deviations between calculated and 
experimental molal mean ionic activity coefficient m  was 

minimized, 
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In this equation, m  is calculated using the following 

equations: 
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where *   is the mean ionic activity coefficient of an 
electrolyte, 

c  and 
a  are the stoichiometric numbers of the 

cation and the anion of the electrolyte, respectively, 

c a    , 
sM is the molecular weight of the solvent, and 

m  is the molality of the electrolyte solution.  
      Using this scenario, the adjustable parameters in T-E-
UNIQUAC model are surface area parameters r  and 

iq  for 
species i , the binary interaction energy parameter 

,am mmu , 

,ma cau  and q. Treating r  and 
iq as adjustable parameters are 

reasonable as their effective dimensions in the solution are 
hardly associated with their crystal structure. Having in 
mind the Eq. (18), 

,am mmu  is the difference of the interaction 

enthalpies of the ion-molecule pair and the molecule-
molecule pair, and 

,ma cau  is defined as the difference of the 

interaction enthalpies of the molecule-ion and the cation-
anion pair. Moreover, q is the entropic index in the 
nonextensive Tsallis weight. The experimental data 
available in the literature [23] were employed for evaluation 
of these adjustable parameters.  
      Table 1 demonstrates the evaluated adjustable 
parameters along with  obtained from the T-E-UNIQUAC 
model, the modified electrolyte-UNIQUAC model 
developed by Messnaoui et al. [24], E-NRTL model 
reported by Chen et al. [21,22], and the Pitzer model [25, 
26]. It can be interpreted that the results are comparable and 
in some cases with better accuracy. Indeed, the results of the 
proposed model are satisfactory leading to the accurate 
calculation of molal mean ionic activity coefficients. 
      Figures 1-6 are the visual indication of the accuracy of 
the present model in the calculation of the individual 
activity coefficient in the binary mixture in comparison with 
experimental data.  
 
CONCLUSIONS 
 
      Boltzmann weight and Boltzmann distribution are the 
fundamental bases for the current electrolyte models. 
However, the introduction of nonextensivity to the 
UNIQUAC model proposes a new theoretical basis for 
describing the behavior of electrolyte systems. Accordingly,  
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   Table 1. Calculated Interaction Parameters for the Developed T-E-UNIQUAC Model, and a Comparison with  
                  Results Obtained with the Chen et al., Messnaoui et al. and  Pitzer  Models  for  Mean  Ionic Activity         
                  Coefficients 
 

 
Electrolyte maxm  ,m a cau

 
,am mmu

 
q  

T-E-UNIQUAC Messnaoui Chen Pitzer 

CsI 3.0 -990.7529 838.71 0.50 0.0333 0.0104 0.0075 0.0101 

HBr 6.0 694.9412 28.47 0.50 0.0982 0.0452 0.1532 0.0164 

HCl 6.0 -1204.69 -333.54 0.70 0.0878 0.012 0.0331 0.0033 

HI 6.0 -1088.13 655.05 0.67 0.0505 0.0381 0.167 0.0255 

KCl 5.0 -1545.03 4388.13 0.70 0.0346 0.0088 0.0127 0.0115 

LiBr 6.0 -3133.83 3079.81 0.72 0.1195 0.0221 0.043 0.0078 

LiClO4 4.5 605.9063 -528.36 0.43 0.1272 0.014 0.0261 0.0074 

LiI 3.0 -4537.24 3845.31 0.78 0.0291 0.0181 0.0221 0.0191 

LiNO3 6.0 -746.18 1230.95 0.51 0.0679 0.0042 0.0113 0.0036 

LiOH 5.0 -781.461 1938.36 0.57 0.0377 0.021 0.0202 0.0499 

NaCl 6.0 -3551.44 2064.38 0.42 0.0522 0.0035 0.018 0.0036 

NaClO3 3.0 -530.294 1187.75 0.46 0.0403 0.0008 0.0051 0.0081 

NaClO4 6.0 -1238.29 2648.60 0.65 0.0364 0.0017 0.0096 0.0041 

NaF 1.0 -473.133 484.243 0.43 0.0136 0.0069 0.0077 0.0082 

NaOH 6.0 -271.66 -1727.07 0.47 0.1113 0.01 0.0228 0.0099 

CaCl2 6.0 -918.788 571.60 0.62 0.4192 0.0318 0.1753 0.0360 

MgBr2 3.0 646.5172 -1378.58 0.61 0.9305 0.0327 0.1196 0.0063 

MgI2 3.5 -890.744 2209.36 0.43 0.2367 0.0680 0.1999 0.0076 

Zn(ClO4)2 4.0 404.4911 -964.63 0.50 0.6017 0.2280 0.2892 0.0093a 

Li2SO4 3.0 -831.7793 -115.49 0.31 0.0377 0.0233 0.0198 0.0075 

Na2CrO4 4.0 -169.09 -80.36 0.73 0.0495 - 0.057 - 

Na2SO4 4.0 -1593.353 -155.28 0.50 0.3635 0.0560 0.0308 0.0109 

AlCl3 1.8 -172.087 4249.84 0.72 0.1551 - 0.115 - 

Cr2(SO4)3 1.2 -692.416 3993.97 0.42 0.1153 - 0.129 - 

    maxm : Maximum molality of the electrolyte. a maxm : 2.0. 
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Fig. 1. A comparison of the mean ionic activity coefficients of CsI electrolyte with experimental data 
                    at 298.15 °K [23]. 
 

 

Fig. 2. Comparison of the experimental and calculated mean ionic activity coefficients of LiI electrolyte 
                  at 298.15 °K [23]. 
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Fig. 3. Comparison of the experimental and calculated mean ionic activity coefficients of LiOH electrolyte 
                 at 298.15 °K [23]. 
 
 

 
Fig. 4. Comparison of the experimental and calculated mean ionic activity coefficients of NaF electrolyte 

                  at 298.15 °K [23]. 
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Fig. 5. Comparison of the experimental and calculated mean ionic activity coefficients of Cr2(SO4)3 electrolyte 

                   at 298.15 °K [23]. 
 
 

 
Fig. 6. Comparison of the experimental and calculated mean ionic activity coefficients of Na2CrO4 electrolyte  

                   at 298.15 °K [23]. 
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replacement of the Boltzmann’s weight by the Tsallis’ 
weight leads to an increase in the degree of freedom of the 
T-E-UNIQUAC model. The entropic index q is the extra 
parameter that increases the degree of freedom of the 
proposed model that also describes the degree of 
nonextensivity observed in the system. Furthermore, the 
introduction of q can make the fitting procedure more 
accurate. 
      In order to achieve an overall conclusion regarding the 
applicability of the proposed T-E-UNIQUAC model, the 
following closures can be stated: (i) our proposed model has 
a notable complexity in comparison to current models. 
Higher complexity means an extended runtime in order to 
achieve the optimal results.  (ii)  A remarkable strength of 
this model lies in its ability to predict the individual activity 
coefficients of the ion. As a result, the physical significance 
of the proposed T-E-UNIQUAC model introduces a unique 
platform for future research studies.  
 
Appendix A 
      

E
resh can be calculated by considering the excess 

enthalpies of all cells, 
 
      ( ) ( ) ( ),E ref ref ref

res m m m m c c c c a a a ah q X h h q X h h q X h h        

                    (A1) 
 
where 

ih  and ref
ih  are the residual molar and reference 

enthalpies of cells with i as a central species, respectively. 
The following equations relate 

ih to the local area fractions: 

 

      
,

( ),
( ).

m mm mm cm cm am am

c c mc mc ac ac

a a ma ma ca ca

h h h h
h Z h h
h Z h h

  
 
 

  

 

 

                       (A2) 

 
Chen et al. [21,22] considered the reference states as a pure 
solvent and a pure completely ionized electrolyte. Thus, 

ref
ih are defined as 

  

      
,

,
.

ref
m mm
ref
c c ac
ref
a a ca

h h

h Z h
h Z h







                            (A3) 

 
With     the    substitution  of   Eqs.  (A2)  and   (A3)  in  Eq. 

 

(A1), E
resh  can be calculated as: 

 
, , , ,( ) ( ) ( ).E

res m m am am mm cm cm mm c c c mc mc ac a a a ma ma cah q X u u q X Z u q X Z u      

                         (A4) 
 
Furthermore, local area fractions can be substituted in the 
above equation and thus: 
 

, , , , , ,

, , ,

, ,

,

( ) ( )

( ).

a am mm am mm c cm mm cm mm m mc ac mc acE
res m m c c c

m a am mm c cm mm a m mc ac

m ma ca ma ca
a a a

c m ma ca

H u H u H u
h q X q X Z

H H H
H u

q X Z
H

  
    


 


 

  




  

                       (A5) 
 
The residual excess molar Gibbs energy, E

resg , can be derived 

by the substitution of Eq. (18) in Eq. (A5) and the use of 
Eq.(20), 
 

1 1 2 2

0 0
1 2

3 3 4 4

3 40 0

exp ( ) exp ( )

( )exp ( ) ( )exp ( )

exp ( ) exp ( )
exp ( ) exp ( )

x x
q qE

res m m a m m c
a c

m a c q m c a q
c a

x x
q q

a a a m c c c m
c m q a m q

c c x c c x
g q X dx q X dxq qc x c x

q q
c c x c c x

q X Z dx q X Z dx
c x c x

 
     

 
   

 
 

     

 
 

   

 

 

 

                                                                            (A6) 
 
where we have used the change of variables

 
1 , /am mmc u R ,

2 , /cm mmc u R ,
 3 , /ma cac u R , 

4 , /mc acc u R  and 

1/x T  . 
      Integration of the above equation requires the use of the 
following equations (Eq. 3.194 5 and 3.194 1 of [27]): 
 

      

'
'

'0 1

2

exp ( ) 1
exp ( ) 1

1 [ ( ) ( )],
(2 )

x
q

q

q
q q

c cx
dx dba b cx a

a
b b

a q a a

  


   


 
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  


 

 
                        (A7) 
 

      2 1( ) (1, 2 ;3 ; ),q x F q q x                             (A8) 

 
where 2q  ,

 exp ( )q cx    and 
2 1( , ; ; )F x    is the 

hypergeometric function. 
      The analytical expression for E

resg is obtained as (see 

Appendix): 
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