Regular Article

www.physchemres.org info@physchemres.org

Phys. Chem. Res., Vol. 10, No. 1, 1-12, March 2022 DOI: 10.22036/PCR.2021.271462.1881

The Effects of Silicon Oxide on the Structure, Physical Chemistry Properties, and **Bioactivity of Phosphate Glasses Containing Sodium, Strontium, and Titanium** Oxides

I. EL Abdouni^a, S. Krimi^{a,*} and H. Oudadesse^b

^aLaboratory of Physical Chemistry of Inorganic Materials (LPCMI), Faculty of Sciences Ain chock, University of Hassan II Casablanca, Morocco

> ^bUniversity of Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France (Received 2 February 2021, Accepted 19 July 2021)

Glasses with molar compositions $40Na_2O-10SrO-(20-x)TiO_2-xSiO_2-30P_2O_5$ ($0 \le x \le 10$; O/P = 4), were prepared by the classical melt-quenching technique and structurally characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), Raman, nuclear magnetic resonance (NMR), and density measurements. The introduction of SiO₂ into the phosphate glass slightly weakened the glass network, as shown by the small increase in the molar volume (V_M) and the decrease in the glass transition temperature (T_e). This behavior was due to the existence of more ionic P-O-Si than P-O-P bonds. Spectroscopic studies showed that SiO₂ like P₂O₅ oxide behaved as a network former and that the glass structure contained P-O, P-O-P, Si-O, Si-O-Si, Ti-O, Ti-O-Ti, P-O-Ti, and P-O-Si linkages. The preliminary results of the in vitro bioactivity tests showed the existence of ionic exchanges between the simulated body fluid (SBF) solution and the studied glasses. X-ray powder diffraction and FTIR spectroscopy confirmed the formation of the Ca-P layer on the surfaces of the tested compositions.

Keywords: Phosphate, Glass, Bioactivity, Raman, NMR

INTRODUCTION

Phosphate glasses have attracted great interest in recent years due to their chemical properties and numerous applications in various fields, such as energy, health, environment, and catalysis [1-4]. One of the properties of phosphate glasses is that they have the potential to be used as biomaterials because of their chemical composition and low chemical durability [5]. In view of the great need for bioactive materials, different phosphate glass compositions have been investigated [6-10]. Understanding the structure of phosphate glasses is of fundamental interest to chemists because it allows them to adjust compositions to the targeted application. Various elements of the periodic table

have been incorporated into different phosphate glass compositions to improve their chemical, physical, and biological properties [11-13]. The diverse properties and applications of phosphate glasses depend on their structure; phosphate groups are classified according to the Qⁿ nomenclature, where n varies from 0 to 4 and represents the number of bridging oxygen (BO) atoms per phosphate tetrahedron. The Qⁿ-groups notation is related to the oxygen-to-phosphorus ratio. Thus, the glass structure can be formed by a cross-linked network of Q³ tetrahedra (O/P = 2.5) and infinite chains of Q² tetrahedra (O/P = 3), or by a small diphosphate Q^1 (O/P = 3.5) and monophosphate Q^0 (O/P = 4) [14]. In this regard, many studies have been conducted on the effect of titanium or/and strontium oxides on sodium phosphate glasses [15-17]. The coordination number of Ti⁴⁺ ions in the glasses was found to be four, five, or six [18,19]. Furthermore, titanium- and strontium-

^{*}Corresponding author. E-mail: saida.krimi@etu.univh2c. ma

doped phosphate-based glasses were found to exhibit interesting physicochemical and biocompatibility properties, making them promising candidates for use as substitute biomaterials [20]. A study on the effect of SiO₂ and Fe₂O₃ on the surface properties of phosphate-based glasses showed that the synthesized composites were cytocompatible and that the cells were aligned along the phosphate glass fibers in the composite material [21]. Substituting TiO₂ for SiO₂ improved the physical properties and biocompatibility of the P₂O₅-CaO-Na₂O glass system [22]. Recently, the effect of silica on the structural and luminescence properties of Eu³⁺/Tb³⁺ co-doped phosphate glass (P₂O₅-CaO-Na₂O) has been reported [23].

To the best of our knowledge, the use of silicon oxide in phosphate glass matrix for biological applications has scarcely been reported in the literature. Accordingly, the present study aimed to investigate the effect of replacing titanium with silicon in sodium phosphate glasses containing strontium and study the *in vitro* biological behavior in the SBF solution for the obtained glasses.

MATERIALS AND METHODS

Glasses with molar compositions 40Na₂O-10SrO-(20-x) TiO_2 -xSiO_2-30P_2O_5 (0 \le x \le 10) were prepared in air by melt-quenching of the mixture of reagent grade chemicals of Na₂CO₃ (99%), SrCO₃ (98%), TiO₂ (99%), SiO₂ (99%), and $(NH_4)_2HPO_4$ (99%). The mixtures were heated in a platinum crucible at 200 °C, 400 °C, and 600 °C for 12 h to decompose phosphate and carbonate reagents. The temperature was then progressively increased until complete melting occurred at temperatures between 1100 °C and 1250 °C depending on the silicon oxide content. Then, the melts were poured onto a metallic plate preheated at 150 °C. All the obtained glasses were annealed at T₂-20 °C, to remove residual stresses, and T = 640 °C. Figure 1 shows photographs of the glasses prepared under the conditions described above. As it can be seen, all the glasses were colorless and transparent. The obtained glasses 40Na₂O-10SrO-(20-x) TiO₂-xSiO₂-30P₂O₅ were denoted as PSi0 (x = 0), PSi2 (x = 2), PSi4 (x = 4), PSi6 (x = 6), PSi8 (x = 8), and PSi10 (x = 10).

X-ray diffraction (XRD) was used to confirm the amorphous state of the synthesized materials and identify

Fig. 1. Photographs of $40Na_2O-10SrO-(20-x)TiO_2-xSiO_2-30P_2O_5$ ($0 \le x \le 10$) glasses.

the crystalline phases. XRD patterns were recorded at room temperature using the D8-Advance diffractometer (Bruker) with Cu K α radiation in the 2 θ range from 10° to 60°. Glass transition, crystallization, and melting temperatures (T_g, T_c, and T_m, respectively) were measured on 50 mg of samples under N₂ gas atmosphere at 0.1 MPa without pressure control using a Setaram Labsys 1600TG-DTA/DSC thermal analyzer with a heating rate of 10 °C min⁻¹ and a measurement error of 5 °C in a platinum crucible. To obtain more information about the structure of the obtained glasses, their powders were analyzed by Raman, Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopies. Raman spectra were obtained using a Vertex 70 spectrometer in the spectral range of 400-3600 cm⁻¹ with a laser source ($\lambda = 633$ nm). FTIR analysis was performed using IR Affinity-1S spectrometer (Shimadzu) from 400 to 4000 cm⁻¹. ³¹P MAS NMR data were collected at 12 kHz on a Bruker Advance 600 MHz spectrometer. The density (ρ) was measured on bulk glasses by the Archimedes method and using diethyl phthalate as the immersion liquid. Glass density (ρ) was measured using the following equation: $\rho = [m_a/(m_a - m_l)]\rho_l$, where m_a is the mass of the sample in air, m_l is the mass of the sample immersed in the liquid, and ρ_l is the density of the liquid (diethyl phthalate) at room temperature. The precision of the measurements was about ± 0.02 g cm⁻³. Molar volume was calculated using the relation $V_M = M/\rho$, in which M is the molar mass of the glass and ρ is the density). The *in vitro* bioactive behavior of the studied glasses was evaluated by dissolving 30 mg of powder in 60 ml of the SBF having the same composition as the blood plasma. The samples were immersed for 30 days at 37 °C and 50 rpm min⁻¹ to allow a similar physiological environment. The SBF solution was prepared, as previously described [24], by dissolving the following chemical reagents in deionized water: NaCl, NaHCO₃, (CH₂OH)₃·CNH₂, KCl, CaCl₂·2H₂O, KH₂PO₄,

Fig. 2. X-ray diffraction of $40Na_2O-10SrO-(20-x)TiO_2-xSiO_2-30P_2O_5$ ($0 \le x \le 10$) glasses.

and $MgCl_2 \cdot 6H_2O$. The pH of the solution was adjusted to 7.4 by 6 N HCl.

After immersion, the samples were washed with ethanol and dried at room temperature for 24 h. Dried glass powders were analyzed by means of X-ray powder diffraction and FTIR spectroscopy to determine the structural changes that occurred on the surface of glass samples after reacting with the SBF solution.

RESULTS AND DISCUSSION

X-Ray Diffraction (XRD) Characterization

XRD patterns of $40Na_2O-10SrO-(20-x)TiO_2-xSiO_2-30P_2O_5$ glasses ($0 \le x \le 10$) are shown in Fig. 2. The absence of diffraction peaks indicates the amorphous state of all the prepared materials. All the obtained phosphate glasses were heated at T = 640 °C for 12 h. The identified crystalline phases from the annealed glasses are shown in Fig. 3. XRD diffractogram of the silicon-free glass composition with the chemical formula $Na_4Sr_{0.5}Ti(PO_4)_3$ showed the crystallization of the phosphate phases $Na_5Ti(PO_4)_3$ (ASTM powder diffraction file, N°01-081-2420), $NaTi_2(PO_4)_3$ (ASTM powder diffraction file, N°01-084-2009), and the diphosphate phase $Sr_2P_2O_7$ (ASTM powder diffraction file, N°01-084-2009).

Fig. 3. X-ray diffractograms of $40Na_2O-10SrO-(20-x)TiO_2-xSiO_2-30P_2O_5$ ($0 \le x \le 10$) glasses heated at T = 640 °C [(1) Na_5Ti(PO_4)_3, (2) Sr_2P_2O_7, (3) NaTi_2(PO_4)_3, (4) Na_4P_2O_7, (5) SiO_2].

EL Abdouni et al./Phys. Chem. Res., Vol. 10, No. 1, 1-12, March 2022.

Fig. 4. The evolution of density and molar volume for $40Na_2O-10SrO-(20-x)TiO_2-xSiO_2-30P_2O_5$ ($0 \le x \le 10$) glasses *versus* SiO₂ mol%.

	Na O	5:0	TiO	SiO	P.O.	М		V	т	Та	Т
	INa ₂ O	510	102	5102	F ₂ O ₅	IVI	ρ	V M	I g	10	1 _m
	(mol%)	(mol%)	(mol%)	(mol%)	(mol%)	$(g mol^{-1})$	(g cm ⁻³)	$(\text{cm}^3 \text{mol}^{-1})$	(°C)	(°C)	(°C)
							(± 0.02)	(±0.2)	(± 5)	(± 5)	(± 5)
PSi0	40	10	20	0	30	93.71	2.92	32.1	440	560/580	704
PSi2	40	10	18	2	30	93.32	2.84	32.9	435	563/585	704
PSi4	40	10	16	4	30	92.92	2.81	33.1	425	560/577	704
PSi6	40	10	14	6	30	92.52	2.79	33.2	410	563	674/723
PSi8	40	10	12	8	30	92.13	2.77	33.3	400	553/563	678/720
PSi10	40	10	10	10	30	91.73	2.75	33.4	387	550/577	683/720

Table 1. Compositions, Molar Mass, Density, Molar Volume, and Characteristic Temperatures of the Studied Glasses

compositions containing SiO₂, XRD patterns revealed the existence of the previous phases crystallized from the composition x = 0 in addition to SiO₂ (ASTM powder diffraction file, N°01-070-3318) and Na₄P₂O₇ (ASTM powder diffraction file, N°00-010-0187).

Density and Molar Volume

Figure 4 shows the variation in the density (ρ) and molar volume (V_M) *versus* SiO₂ content of the studied glasses. It

can be clearly seen that the value of the density decreased from 2.92 to 2.77 while the molar volume increased from 32.1 to 33.4 cm³ mol⁻¹ when the percentage of SiO₂ in the glass increased from 0 to 10 mol% (Table 1). The decrease observed in the density of the glasses when titanium oxide TiO₂ was replaced with silicon oxide SiO₂ can be attributed to the fact that the molecular weight of silicon oxide (60.08 g mol⁻¹) is lower than that of titanium oxide (79.87 mol⁻¹). The molar volume (V_M = M/ ρ) is inversely

Fig. 5. DSC thermograms of $40Na_2O-10SrO-(20-x)TiO_2-xSiO_2-30P_2O_5$ ($0 \le x \le 10$) glasses.

proportional to the density (ρ), so every decrease in ρ implies an increase in V_M. At the same time, the molar mass (M) values of the studied glasses decreased from 93.71 to 91.73 mol⁻¹, suggesting that the molar volume must have decreased as well. These two antagonist effects led to a slight variation in the molar volume when the SiO₂ content increased in the glass matrix. Typical behavior was observed in other phosphate glasses [22].

Differential Scanning Calorimetry (DSC) Characterization

Figure 5 shows the DSC thermograms of the $40Na_2O-10SrO-(20-x)TiO_2-xSiO_2-30P_2O_5$ glasses ($0 \le x \le 10$). All the prepared glasses exhibited an endothermic deviation due to the glass transition temperature (T_g), followed by exothermic peaks due to the crystallization temperatures (T_c) and endothermic changes due to the melting temperatures (T_m) of the crystalline phases. The values of

Table 2. Raman Band Assignments of the Studied Glasses

Wavenumbers	Assignments	Ref.
v (cm)	O-Si-O Angle	
	deformation	
400-600	O-Ti-O Angle	[25,30,41]
	deformation	
	O-P-O bending modes	
	P-O-P deformations	
	P-O-P (Q ¹) stretching	
	symmetric	
630-800	Si-O-Si (Q ¹) bond	[29,31-40]
	stretching vibration	
	Ti-O-Ti-O chains	
	Ti-O vibrations of TiO ₆	
	octahedra	
	$(PO_4)^{3-}(Q^0)$ symmetric	
800-1100	stretching	[30-35]
	$(SiO_4)^4 (Q^0)$ asymmetric	
	stretching	
	P-O-P (Q^1) asymmetric	
	stretching	
1150	P-O-Si (Q ¹) stretching	
	vibration	[14,29,31]
	P-O in (PO_2) sym	

characteristic temperatures (Tg, Tc, Tm) for the studied glasses are summarized in Table 1. Tg was determined as the inflection point of the first endothermic peak, Tc as the maximum of the exothermic peaks, and Tm as the minimum of the second endothermic peak. According to Fig. 5, the DSC curves for some glass compositions showed more than one peak of T_c and T_m , suggesting the crystallization of a mixture of phases and the uniqueness of the crystallization and melting temperatures of each phase. This result is in good agreement with the results of XRD characterization.

The T_g value decreased from 440 °C for x = 0 to 387 °C for x = 10, suggesting that the introduction of SiO₂ oxide into the glass composition weakened the vitreous network. This result is in good agreement with the increase observed previously in the molar volume. The observed decrease in

EL Abdouni et al./Phys. Chem. Res., Vol. 10, No. 1, 1-12, March 2022.

Fig. 6. Raman spectra of 40 Na₂O-10SrO-(20-x)TiO₂-xSiO₂-30P₂O₅ (0 \le x \le 10) glasses.

the glass transition temperature (T_g) indicates that the P-O-Si bonds must have been less covalent than the P-O-P bonds in the glass network. Therefore, it can be concluded that SiO₂ oxide, together with P₂O₅ oxide, acted as a network former in the studied glasses. Similar results have been observed in other phosphate glasses [26-28].

In order to better understand these physico chemical behaviors, the structures of the obtained glasses were studied by Raman and NMR techniques. The rationale behind using NMR techniques was that these techniques allow structural characterization at the molecular level and are very sensitive to small variations in the chemical environment.

Raman Spectroscopy

Raman spectra of $40Na_2O-10SrO-(20-x)TiO_2-xSiO_2-30P_2O_5$ glasses ($0 \le x \le 10$) glasses are shown in Fig. 6. As can be seen in Fig. 6, the bands are broad, which reflects the disordered structure of glasses, and were located at 400-600, 630-800, 800-1100, and 1150 cm⁻¹. Table 2 gives Raman wavenumbers and their assignments. According to previous studies [29-31], the band at 1150 cm⁻¹, clearly in the spectra

energy region 800-1100 cm⁻¹ are attributed to the symmetrical and asymmetrical vibrations of the PO₄, P₂O₇, and SiO₄ units [32,33]. The relatively sharp peak around 1020 cm⁻¹ is due to $P_2O_7^{4-}$ diphosphate ions [34,35]. The strong band around 730 cm⁻¹ observed in the crystalline titanyl oxyphosphate [36,37], in the glass systems TiO₂-SiO₂ [38], Na₂O-P₂O₅ [39], Na₂O-TiO₂-P₂O₅ [31], Na₂O-TiO₂-SiO₂ [40], and Na₂O-SiO₂-P₂O₅ [29], is assigned to the Ti-O, Si-O, and P-O vibrations in the Ti-O-Ti-O-, Si-O-Ti, Si-O-Si, P-O-Si, and P-O-P linkages. The bands observed between 400 and 600 cm⁻¹ [30,41] are attributed to O-P-O, P-O-P, O-Si-O deformations ($\delta 2$ and $\delta 4$ PO₄ modes) and Ti-O vibrations of TiO₆ octahedra [25]. Thus, it can be concluded that Si4+ ions act as a network former in the glasses. Raman results indicated that the glasses were composed of tetrahedral PO4 units and tetrahedral SiO4 units with P-O-Si linkages and TiO₆ octahedra. The presence of

of compositions x = 6 and x = 10, can be assigned to the

coupled vibrations of P-O and Si-O, stretching in the

P-O-Si linkages, and to a (PO₂) symmetric stretching of the

monophosphate group. The bands observed in the high

The Effects of Silicon Oxide on the Structure/Phys. Chem. Res., Vol. 10, No. 1, 1-12, March 2022.

Fig. 7. (a) ³¹P MAS NMR of 40Na₂O-10SrO-(20-x)TiO₂-xSiO₂-30P₂O₅ glasses, (*) spinning sidebands; (b) ³¹P NMR peak enlargement [x = 2: PSi2, x = 6: PSi6, x = 10: PSi10].

P-O-Si bonds, which are more ionic than P-O-P bonds, is in good agreement with the increase observed previously in the molar volume.

Solid-State ³¹P NMR Spectroscopy

Figure 7a shows the ³¹P MAS-NMR spectra of three studied glasses in the system 40Na₂O-10SrO-(20-x)TiO₂ $xSiO_2-30P_2O_5$, with x = 2% (PSi2), 6% (PSi6), and 10% (PSi10) molar ratio. The spectra contained one isotropic chemical shift; this peak position varied between 20 and -30 ppm (Fig. 7b) while the remaining peaks, marked with asterisks, were spinning sidebands that deviated from magic-angle spinning. The ³¹P MAS-NMR spectra (Fig. 7b) present an asymmetric and broad peak centered at -4.5 ppm for PSi2 glass with one shoulder at +1.7 ppm. For the PSi10 glass, containing 10% mol of SiO₂ oxide, in addition to the shoulder at +1.7 ppm, two signals were observed, one toward positive values from $\delta = -4.5$ ppm to $\delta = -2.8$ ppm and the other one toward negative values from $\delta = -4.5$ ppm to $\delta = -5.7$ ppm. Chemical shifts (δ) of the studied glasses corresponded to the resonance within the O^1 region, *i.e.*, phosphorus atoms bonded to two BO atoms and two non-bridging oxygen (NBO) atoms [42]. The shoulder at

 $\delta = +1.7$ ppm is attributed to the Q¹ region in phosphate glasses, with the atomic Na/P ratio slightly greater than one [43,44]. This was the case in the studied glasses where Na/P = 1.3. According to Fig. 7b, the center ${}^{31}P(Q^1)$ signal split into two peaks, with chemical shifts at -2.8 and -5.7 ppm, indicating that the introduction of silicon atoms changed the P environment and that these peaks were formed due to the phosphorus resonance in different sites. Previous studies have shown that the phosphorus chemical shift becomes more negative when the potential field of the nearest-neighboring cations z/ri (where z is the cation charge and ri is the ionic radius of the cation) increases [45,46]. Silicon was found to have a larger cation potential field (z/ri) than the other neighboring ions [z/r (Å⁻¹): $Si^{4+} \sim 15$, $Ti^{4+} \sim 7$, $Sr^{2+} \sim 2$, $Na^+ \sim 1$]; thus, the chemical shift of $P(Q^1)$ units in the vicinity of the silicon, compared to the units surrounded by titanium, sodium, and/or strontium, was characterized by a more negative chemical shift. Hence, the signal with the most negative value (at -5.7 ppm) can be attributed to the chemical displacement of $P(Q^{1})$ in P-O-Si bonds while the peak at $\delta = -2.8$ ppm should be formed due to the chemical shift of $P(Q^1)$ in P-O-M linkages, where $M = Ti^{4+}$, Sr^{2+} , Na^{+} [26,46,47]. In

EL Abdouni et al./Phys. Chem. Res., Vol. 10, No. 1, 1-12, March 2022.

Fig. 8. XRD patterns of 40 Na₂O-10SrO-18TiO₂-2SiO₂-30P₂O₅ glass (PSi2) before and after immersion in SBF solution.

conclusion, ³¹P MAS NMR study showed that Q¹ tetrahedra were the dominant P sites with the presence of P-O-Si linkages. This result confirms the results of Raman spectroscopy, which showed the formation of P-O-Si bonds when silicon was introduced into the phosphate glasses.

Bioactivity in Simulated Body Fluid (SBF)

The preliminary evaluation of in vitro bioactivity of 40Na₂O-10SrO-18TiO₂-2SiO₂-30P₂O₅ glass composition was carried out. XRD patterns of the studied glass before and after immersion in SBF solution for 15 and 30 days are presented in Fig. 8. The experimental XRD pattern shows the formation of both hydroxyapatite Ca₅(PO₄)₃OH (HA) [ICSD file N°01-076-0694] and chlorapatite Ca₅(PO₄)₃Cl (ClA) [ICSD file N°00-012-0263]. The formation of the apatite layer on the surface of the tested glass after immersion in SBF solution was confirmed with four diffraction maxima at 25.8, 31.6, 45.2, and 53.7° (2 θ), which corresponded to the (0 0 2), (2 1 1), (2 0 3), and (0 0 4) apatite reflections, respectively [48]. The formation of chlorapatite was characterized by diffraction peaks at 31.2° and 32.2° (20). The presence of hydroxyapatite and chlorapatite was also confirmed by the appearance of infrared absorption bands, which are associated with the vibrations of P–O bonds in $(PO_4)^{3-}$ groups in HA and ClA (Fig. 9) [49,50]. The above results confirm the

8

occurrence of ionic exchanges between the SBF solution and the studied glass by the precipitation of Ca-P layers on the surface of the studied glass.

CONCLUSIONS

The effect of the introduction of silicon oxide SiO2 into the glasses with the molar compositions 40Na₂O-10SrO- $(20-x)TiO_2-xSiO_2-30P_2O_5$ ($0 \le x \le 10$) was evaluated using various techniques, such as density measurements, DSC, XRD, FTIR, Raman, and ³¹P MAS NMR spectroscopies. The crystallization of the glasses led to the formation of a mixture of phases for all the glass compositions. The evolution of density, molar volume, and glass transition temperature (Tg) versus SiO₂ content suggests the weakening of the glass network due to the replacement of P-O-P bonds with the more ionic P-O-Si bonds. These results were confirmed by the Raman and ³¹P MAS NMR spectroscopies. Raman spectroscopy also showed that the glasses contained PO₄, SiO₄ groups, short -O-Ti-O-Tichains, P-O-P, and P-O-Si linkages. Based on these results, it can be concluded that SiO_2 oxide, along with the P_2O_5 oxide, can act as a network former. In addition, the effect of the weakening of the glass network, caused due to the introduction of SiO₂, on the in vitro bioactivity was

The Effects of Silicon Oxide on the Structure/Phys. Chem. Res., Vol. 10, No. 1, 1-12, March 2022.

Fig. 9. FTIR spectra of 40 Na₂O-10SrO-18TiO₂-2SiO₂-30P₂O₅ glass (PSi2) before and after immersion in SBF solution.

assessed by the ability of the glasses to form Ca-P layers on their surfaces after immersion in SBF solution.

REFERENCES

- Minakshi, M.; Mitchell, D.; Jones, R.; Alenzazey, F., Synthesis, structural and electrochemical properties of sodium nickel phosphate for energy storage devices. *Nanoscale.* 2016, *8*, 11291-11305, DOI: 10.1039/C6NR01179A.
- [2] Rajendran, V.; Gayathri Devi, A. V.; Azooz, M.; El-Batal, F. H., Physicochemical studies of phosphate based P₂O₅-Na₂O-CaO-TiO₂ glasses for biomedical applications. *J. Non. Cryst. Solids.* **2007**, *353*, 77-84, DOI: 10.1016/j.jnoncrysol.2006.08.047.
- [3] Lyczko, N.; Nzihou, A.; Sharrok, P., Calcium phosphate sorbent for environmental application. *Procedia. Eng.* 2014, *83*, 423-431, DOI: 10.1016/j.proeng.2014.09.051.
- [4] Serghini, A.; Brochu, R.; Ziyad, M.; Vedrine, J. C., Synthesis, characterization and catalytic behaviour of Cu_{0.5}M₂(PO₄)₃ (M Zr, Sn, Ti). *J. Alloys. Compd.* **1992**, *188*, 60-64, DOI: 10.1016/0925-8388(92)90643-N.
- [5] Knowles, J. C., Phosphate based glasses for

biomedical applications. J. Mater. Chem. 2003, 13, 2395-2401, DOI: 10.1039/b307119g.

- [6] Abou Neel, E. A.; Pickup, D. M.; Valappil, S. P.; Newport, R. J.; Knowles, J. C., Bioactive functional materials: A perspective on phosphate-based glasses. *J. Mater. Chem.* 2009, 19, 690-701, DOI: 10.1039/b810675d.
- [7] Sharmin, N.; Hasan, M. S.; Parsons, A. J.; Furniss, D.; Scotchford, C. A.; Ahmed, I.; Rudd, C. D., Effect of boron addition on the thermal, degradation, and cytocompatibility properties of phosphate-based glasses. *Biomed. Res. Int.* **2013**, *2013*, 1-12. DOI: 10.1155/2013/902427.
- [8] Christie, J. K.; Ainsworth, R. I.; De Leeuw, N. H., Investigating structural features which control the dissolution of bioactive phosphate glasses: Beyond the network connectivity. *J. Non. Cryst. Solids.* 2016, 432, 31-34, DOI: 10.1016/j.jnoncrysol.2015.01.016.
- [9] Sharmin, N.; Rudd, C. D., Structure, thermal properties, dissolution behaviour and biomedical applications of phosphate glasses and fibres: A review. *J. Mater. Sci.* 2017, *52*, 8733-8760, DOI: 10.1007/s10853-017-0784-4.
- [10] Foroutan, F.; McGuire, J.; Gupta, P.; Nikolaou,

A.; Kyffin, B. A.; Kelly, N. L.; Hanna, J. V.; Gutierrez-Merino, J.; Knowles, J. C.; Baek, S. Y.; Velliou, E.; Carta, D., Antibacterial copper-doped calcium phosphate glasses for bone tissue regeneration, *Biomater. Sci. Eng.* **2019**, *5*, 6054-6062, DOI: 10.1021/acsbiomaterials.9b01291.

- [11] Lusvardi, G.; Zaffe, D.; Menabue, L.; Bertoldi, C.; Malavasi, G.; Consolo, U., *In vitro* and *in vivo* behaviour of zinc-doped phosphosilicate glasses, *Acta Biomater.* 2009, *5*, 419-428, DOI: 10.1016/ j.actbio.2008.07.007.
- [12] Hesaraki, S.; Gholami, M.; Vazehrad, S.; Shahrabi, S., The effect of Sr concentration on bioactivity and biocompatibility of sol-gel derived glasses based on CaO-SrO-SiO₂-P₂O₅ quaternary system. *Mater. Sci. Eng. C.* **2010**, *30*, 383-390, DOI: 10.1016/ j.msec.2009.12.001.
- [13] Parr, G. R.; Gardner, L. K.; Toth, R. W., Titanium: The mystery metal of implant dentistry. Dental materials aspects. *J. Prosthet. Dent.* **1985**, *54*, 410-414, DOI: 10.1016/0022-3913(85)90562-1.
- [14] Brow, R. K., Review: the structure of simple phosphate glasses. J. Non. Cryst. Solids. 2000, 263, 1-28, DOI: 10.1016/S0022-3093(99)00620-1.
- [15] Mošner, P.; Vosejpková, K.; Koudelka, L., Thermal behaviour and properties of Na₂O-TiO₂-P₂O₅ glasses. *J. Therm. Anal.* Calorim. **2009**, *96*, 469-474, DOI: 10.1007/s10973-008-9584-z.
- [16] https://akjournals.com/view/journals/10973/96/2/articl e-p469.xml - affiliation0 [16] Abou Neel, E. A.; Chrzanowski, W.; Pickup, D. M.; O'Dell, L. A.; Mordan, N. J.; Newport, R. J.; Smith, M. E.; Knowles, J. C., Structure and properties of strontiumdoped phosphate-based glasses. *J. R. Soc. Interface* 2009, *6*, 435-446, DOI: 10.1098/ rsif.2008.0348.
- [17] Brauer, D. S.; Karpukhina, N.; Law, R. V.; Hill, R. G., Effect of TiO₂ addition on structure, solubility and crystallisation of phosphate invert glasses for biomedical applications. *J. Non. Cryst. Solids.* 2010, *356*, 2626-2633, DOI: 10.1016/ j.jnoncrysol.2010.03.022.
- [18] Osipov, A. A.; Korinevskaya, G. G.; Osipova, L. M.; Muftakhov, V. A., Titanium coordination in

TiO₂-Na₂O-SiO₂ glasses of xTiO₂(100-X) [2Na₂O-3SiO₂] ($0 \le x \le 10$) composition based on Raman spectroscopy. *Glas. Phys. Chem.* **2012**, *38*, 357-360, DOI: 10.1134/S1087659612040098.

- [19] Yarker, C. A.; Johnson, P. A. V.; Wright, A. C.; Wong, J.; Greegor, R. B.; Lytle, F. W.; Sinclair, R. N., Neutron diffraction and exafs evidence for TiO₅ units in vitreous K₂O.TiO₂.2SiO₂. *J. Non. Cryst. Solids.* **1986**, *79*, 117-136, DOI: 10.1016/0022-3093(86)90041-4.
- [20] Lakhkar, N.; Abou Neel, E. A.; Salih, V.; Knowles, J. C., Titanium and strontium-doped phosphate glasses as vehicles for strontium ion delivery to cells. *J. Biomater. Appl.* 2011, 25, 877-893, DOI: 10.1177/0885328210362125.
- [21] Shah Mohammadi, M.; Ahmed, I.; Muja, N.; Rudd, C. D.; Bureau, M. N.; Nazhat, S. N., Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites. *J. Mater. Sci. Mater. Med.* 2011, 22, 2659-2672, DOI: 10.1007/s10856-011-4453-x.
- [22] Aldaadaa, A.; Al Qaysi, M.; Georgiou, G.; M. A.; Leeson, R.; Knowles, J. C., Physical properties and biocompatibility effects of doping SiO₂ and TiO₂ into phosphate-based glass for bone tissue engineering. *J. Biomater. Appl.* **2018**, *33*, 271-280, DOI: 10.1177/0885328218788832.
- [23] Said, H.; Oueslati Omrani, R.; Arana, L. R.; El Bahri, D.; Boussen, S.; Bouzidi, C.; Terraschke, H.; Hamzaoui, A. H.; M'nif, A., The effect of silica additive on the structural and luminescence properties of Eu³⁺/Tb³⁺ co-doped metaphosphate glasses. *J. Mol. Struct.* 2019, *1192*, 42-48, DOI: 10.1016/j.molstruc.2019.04.087.
- [24] Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; and Yamamum, T., Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J. Biomed. Mater. Res. 1990, 24, 721-734, DOI: 10.1002/jbm.820240607.
- [25] Tiwari, B.; Pandey, M.; Sudarsan, V.; Deb, S. K.; and Kothiyal, G. P., Study of structural modification of sodium aluminophosphate glasses with TiO₂ addition through Raman and NMR spectroscopy. *Phys. B Condens. Matter.* **2009**, 404, 47-51,

The Effects of Silicon Oxide on the Structure/Phys. Chem. Res., Vol. 10, No. 1, 1-12, March 2022.

DOI: 10.1016/j.physb.2008.10.016.

- [26] Kaoua, S.; Krimi, S.; El Jazouli, A.; Hlil, E. K.; Waal, D., Preparation and characterization of phosphate glasses containing titanium and vanadium. *J. Alloys Compd.* 2007, 429, 276-279, DOI: 10.1016/j.jallcom.2006.04.004.
- [27] Lamrhari, S.; El Khalidi, Z.; Krimi, S.; Haddad, M.; Couzi, M.; Lachgar, A.; El Jazouli, A., Synthesis and structural characterization of phosphate-based Nasiglasses Na₃Ca1-x MnxTi(PO₄)₃($0 \le x \le 10$). *J. Mater. Environ. Sci.* **2018**, *9*, 3009-3018. http://www.jmaterenvironsci.com.
- [28] Mooghari, H. R. A.; Nemati, A.; Yekta, B. E.; Hamnabard, Z., The effects of SiO₂ and K₂O on glass forming ability and structure of CaO-TiO₂-P₂O₅ glass system. *Ceram. Int.* **2012**, *38*, 3281-3290, DOI: 10.1016/j.ceramint.2011.12.034.
- [29] Chakraborty, I. N.; and Condrate, R. A., the vibrational spectra of glasses in the Na₂O-SiO₂-P₂O₅ system with a 1:1 SiO₂:P₂O₅ molar ratio. *Phys. Chem. Glas.* **1985**, *26*, 68-73, https://www.researchgate.net/publication/275973126
- [30] Shibata, N.; Horigudhi, M.; Edahiro, T., Raman spectra of binary high-silica glasses and fibers containing GeO₂, P₂O₅ and B₂O₃. *J. Non. Cryst. Solids.* **1981**, *45*, 115-126, DOI: 10.1016/0022-3093(81)90096-X.
- [31] Krimi, S.; El Jazouli, A.; Rabardel, L.; Couzi, M.; Mansouri, I.; Le Flem, G., Glass formation in the Na₂O-TiO₂-P₂O₅ System. J. Solid State Chem. 1993, 102, 400-407, DOI: 10.1006/jssc.1993.1051.
- [32] Karakassides, M. A.; Saranti, A.; Koutselas, I., Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. *J. Non. Cryst. Solids.* 2004, 347, 69-79, DOI: 10.1016/j.jnoncrysol.2004.08.111.
- [33] Kalampounias, A. G., IR and Raman spectroscopic studies of sol-gel derived alkaline-earth. *B. Mater. Sci.* 2011, 34, 299-303, DOI: 10.1007/s12034-011-0064-x.
- [34] Cornilsen, B. C.; Condrate, R. A., The vibrational spectra of α-alkaline earth pyrophosphates. *J. Solid State Chem.* **1978**, *23*, 375-382, DOI: 10.1016/0022-4596(78)90087-7.
- [35] Philip, D.; George, B. L.; Aruldha, G., IR and

polarized Raman spectra of Na₄P₂O₇·10H₂O. *J. Raman Spectrosc.* **1990**, *21*, 523-524, DOI: 10.1002/jrs.1250210810.

- [36] Bamberger, C. E.; and Begun, G. M., Synthesis and characterization of titanium phosphates, TiP₂O₇ and (TiO)₂P₂O₇. *J. Less Common Metals.* **1987**, *134*, 201-206, DOI: 10.1016/0022-5088(87)90558-3.
- [37] Bamberger, C. E.; Begun, G. M.; and Cavin, O. B., Synthesis and characterization of sodium-titanium phosphates, Na₄(TiO)(PO₄)₂, Na(TiO)PO₄, and NaTi₂(PO₄)₃. *J. Solid State. Chem.* **1988**, *73*, 317-324, DOI: 10.1016/0022-4596(88)90115-6.
- [38] Best, M. F.; Condrate, R. A., A raman study of TiO₂-SiO₂ glasses prepared by sol-gel processes. *J. Mater. Sci. Lett.* **1985**, *4*, 994-998, DOI: 10.1007/BF00721102.
- [39] Sridarane, R.; Raje, G.; Shanmukaraj, D.; Kalaiselvi, B. J.; Santhi, M.; Subramanian, S.; Mohan, S.; Palanivel, B.; Murugan, R., Investigations on temperature defendant structural evolution of NaPO₃ glass. *J. Therm. Anal. Calorim.* 2004, *75*, 169-178, DOI: 10.1023/b:jtan.0000017339.26217.db.
- [40] Scannell, G.; Barra, S.; Huang, L., Structure and properties of Na₂O-TiO₂-SiO₂ glasses: Role of Na and Ti on modifying the silica network. *J. Non. Cryst. Solids.* **2016**, *448*, 52-61, DOI: 10.1016/ j.jnoncrysol.2016.06.028.
- [41] Avadhesh, K. Y.; Singha, P., A review of structure of oxide glasses by raman spectroscopy avadhesh. *RSC Adv.* 2015, 5, 67583-67609, DOI: 10.1039/C5RA13043C.
- [42] Kirkpatrick, R. J.; Brow, R. K., Nuclear magnetic resonance investigation of the structures of phosphate and phosphate-containing glasses: A review, *J. Solid. State. Nucl. Magn. Reson.* **1995**, *5*, 9-21, DOI: 10.1016/0926-2040(95)00042-O.
- [43] Brow, R. K.; Kirkpatrick, R.J., Turner, G.L., The short range structure of sodium phosphate glasses I. MAS NMR studies. J. Non. Cryst. Solids. 1990, 116, 39-45, DOI: 10.1016/0022-3093(90)91043-Q.
- [44] Montagne, L.; Palavit, G.; Delaval, R., 31P NMR in (100-x)(NaPO₃)-xZnO glasses, *J. Non. Cryst. Solids.* 1997, 215, 1-10, DOI: 10.1016/S0022-3093(97)00032-X.

- [45] Turner, G. L.; Smith, K. A.; Kirkpatrick, R. J.; Oldfield, E., Structure and cation effects on phosphorus-31PMASNMR chemical shifts and chemical-shift anisotropies of orthophosphates. J. Magn. Reson. 1986, 70, 408 -415, DOI: 10.1016/0022-2364(86)90129-0.
- [46] Brow, R. K.; Phifer, C. C.; Turner, G. L.; Kirkpatrick, R. J., Cation effects on 31P MAS NMR chemical shifts of metaphosphate glasses. *J. Am. Ceram. Soc.* 1991, 74, 1287-1290, DOI: 10.1111/ j.1151-2916.1991.tb04099.x.
- [47] Pires, R.; Abrahams, I.; Nunes, T. G.; Hawkes, G. E., Non-random cation distribution in sodium-strontium-phosphate glasses. *J. Non. Cryst. Solids.* 2004, 337, 1-8, DOI: 10.1016/j.jnoncrysol.2004.03.108.

- [48] Dietrich, E.; Oudadesse, H.; Lucas-Girot, A.; Le Gal, Y.; Jeanne, S.; Cathelineau, G., Effects of Mg and Zn on the surface of doped melt-derived glass for biomaterials applications. *Appl. Surf. Sci.* 2008, 255, 391-395, DOI: 10.1016/j.apsusc.2008.06.094.
- [49] Ashok, M.; Meenakshi Sundaram, N.; and Narayana Kalkura, S., Crystallization of hydroxyapatite at physiological temperature. *Mater. Lett.* 2003, 57, 2066-2070, DOI: 10.1016/S0167-577X(02)01140-0.
- [50] Wan, J.; Zhang, C.; Zeng, G.; Huang, D.; Hu, L.; Huang, C.; Wu, H.; Wang, L., Synthesis and evaluation of a new class of stabilized nanochlorapatite for Pb immobilization in sediment, *J. Hazard. Mater.* **2016**, *320*, 278-288. Doi.org/10.1016/j.jhazmat.2016.08.038.