Graphene Oxide/Activated Clay/Gelatin Composites: Synthesis, Characterization and Properties

Document Type : Regular Article

Authors

Laboratory of Organic Electrolytes and Polyelectrolytes Application (LAEPO). Department of Chemistry, Faculty of Sciences, Tlemcen University, B. P. 119 13000 Tlemcen, Algeria

Abstract

In this work, graphene oxide/activated clay/Gelatin (GO/AC/G) composite blends were prepared by a simple solution mixing method. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were investigated to study the novelty in the structural characterization of the samples. The thermal stability was pursued by thermogravimetric analysis (TGA).
The obtained results showed a homogeneous mixture was able to be formed between AC, GO, and G. XRD indicated a successful intercalated structure was created in the composites. The disappearance of montmorillonite and GO peaks at 2 = 8.1° and at 2 =13.5° respectively was observed, indicating the homogenous distribution of GO sheets onto activated clay structure. The interlayer spacing increased from 19.4 to 23.5 Å due to the insertion of gelatin molecules into the sheets of clay.
The IR spectrum of (GO/AC/G) composite revealed the presence of C-O-C bonds, C=C bending, C-OH vibration, and C=O bending. These results suggested that GO had been composited with AC structure. Further, an intense band of N-H at 3419 cm-1 of gelatin was ameliorated through combination with absorption bonds of O-H, indicating the interaction of gelatin with the clay.A comparison of the thermograms of GO/AC and GO/AC/G showed that the thermal stability had been improved.

Graphical Abstract

Graphene Oxide/Activated Clay/Gelatin Composites: Synthesis, Characterization and Properties

Keywords