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      In this study, the antiproliferative activities of some chalcones and dihydropyrazole derivatives in prostate cancer were investigated via 
the androgen receptor using QSAR, machine learning, and molecular docking techniques. A total of 30 dichloro substituted chalcones and 
dihydropyrazole derivatives were collected from the literature and optimized using density functional theory. Genetic function 
approximation was employed for model development. The developed model was thoroughly validated. Its generalization and predictive 
capacities were improved with the extreme learning machine (ELM) algorithm. Molecular docking and drug-likeness screening of the 
compounds were carefully performed. A reduction in the negative coefficient of the descriptor and an increase in the positive coefficient of 
the descriptor improved bioactivity. An R2 pred value of 0.737 showed a strong correlation between the experimental and predicted 
activities. A correlation coefficient of 0.8305 for R2demonstrated the predictability of the model. The ELM-Sine model showed an 
improvement of 66.7% and 8.3% in QSAR and ELM-Sig models, respectively. Molecular docking showed the chalcones and 
dihydropyrazole derivatives to be promising anti-prostate cancer agents, with pi-pi stacking and hydrogen bond interactions favoring the 
inhibition of the androgen receptor. The lead drugs are drug-like and novel anti-prostate cancer agents. 
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INTRODUCTION 
 
      Prostate cancer (PCa) is the second most common 
cancer after lung cancer [1]. It is the sixth leading cause          
of  cancer  mortality  in  males  globally  [2].   According  to  
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GLOBOCAN (2018), over 20 million men will be living 
with PCa by 2024 [3]. The majority of prostate cancer 
patients are men 65 years and older [4]. Pathological 
analysis of PCa showed that it is a heterogeneous disease, 
ranging from inactive to extremely aggressive ones [5]. It is 
established that PCa is driven by the androgen receptor 
(AR), which is a member of the nuclear receptor family [6]. 
Moreover, prostate-specific antigen (PSA), an AR target- 
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gene is used as a PCa biomarker. Notwithstanding the 
controversies surrounding its use, PSA screening is still the 
only available serum biomarker for both diagnosis and 
treatment of PCa [7]. Androgen-synthesizing enzyme 
inhibitors and direct AR antagonists have been approved as 
two treatment options targeting AR signaling pathways. 
Moreover, castration-resistant prostate cancer (CRPC) is 
known to be dependent on androgen-signaling, and almost 
all pathways promoting CRPC growth converge into the 
AR. Several approaches have been developed to target AR 
signaling pathways and inhibit the growth of CRPC. Despite 
the advantage of estrogen receptor (ER)-targeted therapy for 
PCa, its serious side-effects, such as venous 
thromboembolism and estrogenic proliferative actions on 
PCa cells, have led to the discontinuation of estrogen-based 
therapy for advanced PCa [8]. Medicinal and 
pharmaceutical applications of organic compounds have 
been explored using computational techniques, such as 
characterization [9-11], molecular docking [12-14], drug-
like properties [15-17], quantitative structure-activity 
relationship (QSAR), and machine learning [18,19]. The 
present study was designed to explore the antiproliferative 
potential of chalcones and dihydropyrazole derivatives in 
PCa via AR. The combination of synthetic and natural 
compounds has been shown to have anticancer potentials 
[20,21]. Furthermore, natural compounds have been 
reported to have inhibitory effects on AR [21]. Chalcones 
have also been reported to have antiproliferative effects 
[22].  Dihydropyrazole derivatives are reported to inhibit 
telomerase activity in neoplasm [23].  
This study aimed to investigate the antiproliferative 
potential of some chalcones and dihydropyrazole 
derivatives in PCa by AR using combined QSAR, machine 
learning, and molecular docking techniques. To this end, the 
drug-like properties were also evaluated. 
 
COMPUTATIONAL METHODOLOGY 
 
QSAR of Dichloro Substituted Chalcones and 
Dihydropyrazole Derivatives 
      Data collection. The antiproliferative activities of thirty 
compounds of dichloro substituted chalcones and 
dihydropyrazole derivatives were collected from the 
literature [22]. The structures are presented in Table S1, and  

 
 
their activities were reported in IC0 (µM) and converted into 
their corresponding pIC50 values (i.e., logIC50 = pIC50) to fit 
them into a set of values and a normal distribution curve. 
       
Optimization of Molecular Structure 
      The 2D structures of the molecules were obtained from 
ChemDraw [24], transferred to Spartan 14 software [25], 
and optimized using density functional theory (DFT) with 
Becke three Lee-Yang-Parr (B3LYP) correlation [26] and 6-
31G* basis set. This level of theory was used because it was 
shown to be consistent with experimental findings [10,11]. 
The analysis was carried out on the most stable conformer 
of each molecule derived from a molecular mechanics force 
field). 
 
Molecular Descriptor Calculation 
      After removing salts and detecting tautomers from the 
optimized structures, the 1D, 2D, and 3D descriptors of the 
compounds were determined using PaDEL-Descriptor 
software version 2.20 [27]. A total of 1875 descriptors were 
generated and saved as a Microsoft Excel comma-separated 
value (CSV) file. 
 
      Normalization and Data Pre-Treatment 
The calculated descriptors were normalized in the range of  
0 to 1 using Eq. (1). This gave each element the same 
probability to influence and build a successful model at the 
outset.  
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                                                            (1) 

 
In the above equation, X1 is the descriptor value for each 
molecule, and Xmin and Xmax are the minimum and 
maximum values for each descriptor, respectively.  
 
Data Treatment and Data Division 
      The normalized data were then subjected to pre-
treatment using DTC-QSAR software v 1.0.5 [28]. The data 
were divided into a training set (70% of the dataset, 21 
compounds) for the construction of the model and into a test 
set (30% of the dataset, 9 compounds) for the external 
evaluation of the constructed model using the Kennard-
Stone algorithm [29]. 
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Model Development 
      Genetic function approximation (GFA) was employed 
with biological activities (pIC50) as the dependent variable 
and physiochemical properties (descriptors) as independent 
variables [30]. The developed models were based on four 
descriptors (Table 1). 
      Internal validation of the model. The training set was 
validated internally using Material Studio software. The 
validation parameters are presented below. 
      Friedman’s lack of fit (LOF). Friedman’s LOF (Eq. 
(2)) was used to measure the fitness scores of the models. 
LOF is defined as follows [31]; 
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where SEE, p, d, c, and M are the standard error of 
estimation, the total number of descriptors in the model, 
user-defined smoothing parameter, the number of terms in 
the model, and the number of compounds in the training set, 
respectively [32]. A model is considered valid if it has a low 
SEE value. The value of SEE can be calculated using            
Eq. (3): 
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where Yexp is experimental activity, Ypred is the predicted 
activity in the training set, p is the number of descriptors in 
the model, and n is the number of compounds in the training 
set. 
 
 
 
 
 
 
 
 
 
 
 

 
 
      The correlation coefficient (R2). This parameter is the 
most frequently used parameter to evaluate the internal 
validity of a QSAR model. The closer is the value of R2 to 
1.0, the better is the model generated. R2 can be expressed 
as in Eq. (4): 
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where  Ytraining is the mean of the experimental activity in the 
training set. 
      Adjusted R2. The R2 value has to be adjusted because it 
is not a reliable parameter to examine the stability of the 
model. The adjusted R2 is defined as in Eq. (5): 
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where R2, p and n are as defined above. 
      The cross-validation coefficient )( 2

CVQ . The strength 

of the QSAR model to predict the activity of a new 
compound was determined using a cross-validation test. The 
cross-validation coefficient )( 2

CVQ  is defined as in Eq. (6): 
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where Ytraining, Yexp and Ypred are the mean of the 
experimental activity, the experimental activity, and the 
predicted activity in the training set, respectively. 
      External validation of the model. The developed 
model was  validated  externally using  the  R2

predicted  value. 
 
 
 
 
 
 
 
 
 
 
 

       Table 1. List of Descriptors and Their Constructors, Description, and Dimension Used in Developing the QSAR 
                      Model  
 

S/No Name Description Dimension 
1 ATS1s Broto-Moreau autocorrelation-lag 1/weighted by I-state 2D 
2 VR2_Dzi Normalized Randic-like eigenvector-based index from Barysz 

matrix/weighted by first ionization potential 
2D 

3 SpMax5_Bhm Largest absolute eigenvalue of Burden modified matrix-n 
5/weighted by relative mass 

2D 

4 Mi Mean first ionization potentials (scaled on carbon atom) 2D 
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The R2

predicted value is the most commonly used parameter to 
validate a developed model. The idea that a satisfactory 
R2

predicted value indicates that the remaining parameters are 
also satisfactory is not always true. There are other 
statistics, such as variance inflation factor (VIF) and mean 
effect (ME), that can be used to validate a developed model. 
The closer the value of R2

test is to 1.0, the higher the stability 
of the model generated. The stability of a model shows its 
reliability in predicting the activity of a new compound. The 
R2

test can be calculated by Eq. (7): 
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Statistical Analysis of the Descriptor 
      Variance inflation factor (VIF). VIF (Eq. (8)) is used 
to measure the multicollinearity among descriptors and the 
degree at which one descriptor correlates with the other 
descriptors. 
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where R2 is multiple correlation coefficients between the 
variables within the model. If VIF is equal to 1, it signifies 
that there is no intercorrelation between any pair of 
variables. While VIF values ranging from 1 to 5 are 
considered to be acceptable, VIF values greater than 10 
indicate multicollinearity (i.e., the model is unstable) 
[18,33]. 
      Mean effect (ME). The average effect, or the mean 
effect (Eq. (9)), shows the correlation between the effect or 
influence of the given molecular descriptors and the 
activities of the compounds in the model. The descriptor 
signs show the direction of their deviation toward the 
activity of the compounds. That is to say, an increase or 
decrease in the value of the descriptors will improve the 
activity of the compounds. The mean effect can be 
calculated by the following equation: 
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where  Bj  and  Dj  are  the  j-descriptor   coefficients  in  the 

 
 
model and the values of each descriptor in the training set, 
respectively, and m and n stand for the number of molecular 
descriptors and the number of molecules in the training set, 
respectively. Therefore, the mean effect of each descriptor 
used in developing the model was calculated to assess the 
significance of the model [33]. 
      Evaluation of the applicability domain of the model. 
This is essential in establishing whether the model can make 
predictions within the chemical space for which it is 
developed [32]. The leverage approach developed by 
Veerasamy et al. was employed [34], and it is presented in 
Eq. (10): 
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where hi is the leverage of a compound, Xi is the matrix of 
the training set compound of i, X is the m x k descriptor 
matrix of the training set compound, and XT is the transpose 
matrix of X. As a prediction tool, the warning leverage (h*) 
is the limit of normal values for X outliers and is defined as 
follows (Eq. (11)):     
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where n and k are the number of descriptors and the training 
set, respectively. 
      Model quality assurance. Validation parameters are 
frequently used to measure the strength, dependability, and 
predictive ability of a developed QSAR model. The general 
minimum values required for both internal and external 
validation parameters used to assess a QSAR model are 
presented in Table S2) [34]. 
      Extreme learning machine (ELM). Extreme learning 
machine belongs to a class of feed-forward neural networks 
characterized with a single hidden layer [35-37]. The 
algorithm has an excellent ability to approximate patterns, 
functions, and all intricacies correlating the descriptors with 
the target model. In addition, this algorithm (i.e., ELM) has 
a high generalization and predictive ability compared with 
the traditional single-layer networks [38]. Aside from the 
hidden layer, the network has the input and output layers 
with fully connected weights. ELM computes the output 
weights  of  the  network  based  on  the generalized  inverse  
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matrix theory while the biases and input weights are 
initialized randomly. This random weight selection 
introduces the advantage of short training time as well as 
fast learning speed to the algorithm. A pool of input 
descriptors (

PL ) and the experimental activities (
CT ) of the 

investigated compounds should be considered in such a way 
that ( , )P j C jL T , where 

1 2[ , ,.. ]T m
P j j j jmL c c c   and 

1 2[ , ,.... ] N
C j j j jNT T T T  [39]. The connection weights 

linking the input with the hidden layer are represented in a 
matrix form in Eq. (12). 
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With 1 2[ , ,.... ]Ttq q q q  as values for the bias of hidden layer 
neurons and (.)g  as the activation function, the output 

matrix of the hidden layer H is presented in Eq. (13). 
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The output of the ELM network can be obtained using           
Eq. (14)  
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and β is the weights linking the hidden layer with the output 
layer. 
The least-square solution of Minimize

 CHβ - T  leads to the 

computation of β, as shown in Eq. (15) 
 

      CTH ̂                                                                     (15) 

where H+ represents the Moore-Penrose generalized  inverse 

 
 
of H. 
 
Molecular Docking 
      Protein preparation. The crystal structure of the AR 
(PDB ID: 2AXA) with a resolution of 1.8 Å was 
downloaded from the Protein Data Bank [40]. Protein 
preparation was performed using the protein preparation 
wizard of Schrodinger Suite 2017-1 [41]. The interfering 
ligand was removed, bond orders and charges were 
assigned, and water molecules and all heteroatoms were 
removed. Furthermore, tautomeric states were generated 
using EPIK at pH 7.0 ± 2 [42], and the protein was 
minimized using the OPLS3 force field [43].  
      Ligands preparation. The optimized structures of the 
lead compounds (i.e., 7, 15, 16, 18, 30, and 31) and a 
standard drug (i.e., R-Bicalutamide) were imported and 
prepared using the ligprep module in Schrodinger Suite 
2017-1 via OPLS3 force field. The generation of possible 
ionization and tautomeric states were generated using EPIK 
at pH 7.0 ± 2. 
      Molecular docking and visualization. The prepared 
lead compounds and R-Bicalutamide were docked at the 
active site of 2AXA to analyze their interactions and 
binding affinities using the glide docking module of 
Schrodinger Suite 2017-1[44]. The ligand interactions were 
depicted using visualization diagrams. 
      Drug-like properties. The adsorption, diffusion, 
metabolism, and excretion, parameters were analyzed using 
QikProp module of Schrodinger Suite             2017-1 [45]. 
These properties play an important role in determining the 
safety and efficacy of drugs [46]. Other properties such as 
molecular weight (MW), the number of hydrogen-bond 
acceptor (HBA), and hydrogen bond donor (HBD) were 
also calculated. 
 
RESULTS AND DISCUSSION 
 
QSAR Model Development of Chalcones and 
Dihydropyrazole Derivatives 
      GFA was employed to generate QSAR models. The best 
model was selected based on statistical significance. The 
selected model was found to meet the recommended 
standards for a stable and reliable model, as outlined in 
Table S2. 
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Model 1 
pIC50 = (-0.037702307 × ATS1s) + (0.061331393 × 
VR2_Dzi) + (1.933506556 × SpMax5_Bhm) + 
(6.184315031 × Mi) – 45.008691509 
 
Descriptors Interpretation 
      The list, description, and dimension of descriptors used 
in developing the model are reported in Table 1. The 2D 
descriptors play a major role in predicting the activity of 
molecules [47]. The negative coefficient of ATS1s 
descriptors in the model shows that a decrease in the 
coefficient of the descriptor will improve the activities 
(pIC50) of chalcones and dihydropyrazole derivatives, as 
antiproliferative inhibitors. In other words, the positive 
coefficients of VR2_Dzi, SpMax5_Bhm, and Mi descriptors 
signify that an increase in the coefficients of descriptors will 
invariably increase the activities (pIC50) of the compounds. 
Therefore, to design potent compounds with high 
bioactivity, the negative coefficient of the descriptor should 
be reduced and the positive coefficients of the descriptors 
should be increased. 
      A comparison of experimental activity (pIC50), predicted 
activity, and the residual of the developed model is 
presented in Table 2. This comparison was used to examine 
the external validity of the model, and the results are shown 
in Tables S3 and S4. The low values of residual recorded 
confirmed that there was a high correlation between the 
experimental activities and predicted activities. The value of 
R2

pred (0.737) signified that the model exceeded the 
minimum value required for a validation parameter of a 
developed model (Table S2). 
      Pearson’s correlation, ME, and VIF of the descriptors 
are presented in Table S5. Low correlation values (≤ 0.5) in 
VR2_Dzi/ Mi/ SpMax5_Bhm descriptors indicate that these 
descriptors do not correlate with one another while those 
descriptors with considerably high correlation values are 
interrelated with each other, such that an increase or 
decrease in one of the descriptors will affect the other. This 
parameter is useful in designing compounds using ligand-
based drug design (LBDD) since the descriptors of 
compounds have a great impact in deciding their bioactivity. 
The ME of the descriptors shown in Table S5 signifies the 
effect of molecular descriptors on the activity (pIC50) of the 

 
 
 Table 2. A  Comparison   of    the   Experimental   Activity  
                (pIC50),   Predicted   Activity  (pIC50),   and     the  
                Residual of the Developed Model 
 

S/No 
Experimental 

activity (pIC50) 
Predicted activity 

(pIC50) Residual 
2 3.36 3.400 -0.040 
3* 3.75 3.669 0.081 
4 3.41 3.641 -0.231 
5 3.83 3.631 0.199 
6* 3.85 3.753 0.097 
7* 4.51 4.125 0.385 
8 3.6 3.629 -0.029 
9 3.53 3.609 -0.079 
10* 3.86 3.652 0.208 
11 3.45 3.475 -0.025 
12 3.59 3.496 0.094 
13 3.68 3.701 -0.021 
14* 3.69 3.497 0.193 
15 4.03 3.980 0.050 
16* 4.77 4.489 0.281 
17 3.45 3.486 -0.036 
18 3.92 3.924 -0.004 
19 3.49 3.603 -0.113 
20 3.83 3.584 0.246 
21* 3.87 3.584 0.286 
22 3.58 3.641 -0.061 
23 3.69 3.647 0.043 
24* 3.59 3.872 -0.282 
25 3.88 3.794 0.086 
26 3.57 3.564 0.006 
27 3.68 3.861 -0.181 
28* 3.76 3.746 0.014 
29 3.79 3.782 0.008 
30 4.08 3.966 0.114 
31 4.49 4.526 -0.026 

Note. * = test set. 

 
compounds. Thus, the order of significance is as follows:  
 
Mi > SpMax5_Bhm > VR2_Dzi > ATS1s  
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Table 3. Validation Parameters for the Developed Model 
 
S/N Validation parameter Value 
1 Friedman LOF 0.0701 
2 R-squared 0.8305 
3 Adjusted R-squared 0.7882 
4 Cross validated R-squared 0.7403 
5 Significant regression Yes 
6 Significance-of-regression (SOR)               

F-value 
19.6023 

7 Critical SOR F-value (95%) 3.0558 
8 Replicate points 0 
9 Computed experimental error 0.0000 
10 Lack-of-fit points 16 
11 Min expt. Error for non-significant LOF 

(95%) 
0.0971 

12 R2
pred 0.737155 

 
 
      The validation parameters, including the R2

pred value for 
the test set, for the best model were generated using 
Material Studio, and the results are presented in Table 3. 
The plot of experimental activity against the predicted 
activity for both the training set and the test set is shown in 
Fig. 1. A high value of correlation coefficient R2 between 
the training set and the test set (0.8305) confirmed that the 
model could successfully predict the activity of a new 
compound due to the high correlation between the predicted 
activity and the experimental activity. The randomness of 
activities on both negative and positive sides of the y-axis 
shown on the scatter plot between the standardized residual 
and the experimental activity and demonstrated in Fig. 2 
confirms that the developed model is free from systematic 
error. 
      To identify outliers and lead compounds in the 
developed model, the standardized residual for the entire 
dataset was plotted against the leverages (Figs. 2 and 3). 
The Williams plot (Fig. 4) shows that two compounds from 
the test set (15 and 27) and one compound (30) from the 
training set had leverage values greater than the warning 
limit (h = 0.714). There was no outlier in the developed 
model   as   all   compounds   fell   within  ±3.0.  Hence,  the 

 
 

 
Fig. 1. The plot of predicted activity against experimental  

       activity for both the training set and the test set. 
 
 

 
Fig. 2. The plot of the standardized residual against  

                   experimental activity (pIC50). 
 

 

 
Fig. 3. The Williams plot of standardized residual against  

              leverages. 

27 

30 
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Fig. 4. Mean absolute error of the QSAR, the ELM-Sine,  

              and the ELM-Sig models. 
 
 

 
Fig. 5. Root mean square error of the QSAR, the ELM-Sine,  
            and the ELM-Sig models. 

 
 

 
Fig. 6. Correlation coefficient of the QSAR, the ELM-Sine,  
             and the ELM-Sig models. 
 
 
developed model can be considered reliable and be used as 
a predictive tool since most leverage values fell within the 
chemical space.  

 
 
The EML Model of Chalcones and 
Dihydropyrazole Derivatives 
      The antiproliferative effects of chalcones and 
dihydropyrazole derivatives against PCa were modeled 
using ELM, and the results of the modeling are presented in 
Figs. 4, 5 and 6. Figure 4 compares the performance of the 
developed ELM model with the QSAR model using mean 
absolute error as a performance evaluator. The developed 
ELM-Sine model performed better than the developed 
QSAR and ELM-Sig model, with performance 
improvement of 66.7% and 8.3%, respectively. A 
comparison of the QSAR and ELM-Sig models based on 
root mean square error is presented in Fig. 5, with 
performance improvement of 25% and 12.5%, respectively. 
Figure 6 shows a comparison of the developed models using 
correlation coefficient as a performance criterion.  
Similarly, Fig. 6 shows the superiority of the ELM-Sine 
model over the other developed models. It should be noted 
that each of the developed models was developed using the 
same number of descriptors to ensure an unbiased 
comparison. The results revealed a performance 
improvement of 6.24% for the ELM-Sine model over the 
QSAR model and 0.75% over the ELM-Sig model. The 
actual values of the estimates for each of the developed 
models and the measured activities for each of the 
investigated compounds are presented in Table S6. In 
addition, Table S7 presents the values of each of the 
performance parameters for all the developed models. 
 
Molecular Docking of the Lead Compounds with 
AR and their Drug-like Properties 
      The lead compounds and R-Bicalutamide (standard 
drug) were docked at the receptor active site. The docking 
results are presented in Table 4 and Fig. 7 and S1-S6. Pi-Pi 
stacking (attractive and noncovalent interactions between 
the aromatic rings) with PHE 764 at the receptor active site 
was conserved in the lead compounds and R-Bicalutamide. 
Compound 30, with a binding affinity of -9.287 kcal mol-1, 
shared similar interactions with the standard drug (PHE 764 
and ASN 705). The high binding affinity of compound 30, 
compared with other lead compounds (7, 15, 16, 18 and 31), 
may be due to the formation of hydrogen bonding (i.e., 
hydrogen atom located between a pair of other atoms having  
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a high affinity for electrons) and/or the pi-pi stacking. 
Compound 30, compared with the other lead compounds, 
shared two pi-pi stacking interactions at the receptor active 
site. Compounds 30 and 31, compared with the other lead 
compounds (7, 15, 16 and 18), had additional hydrogen 
bonds and pi-pi stacking interactions at the receptor active 
site, thus having a stronger inhibitory effect on AR. This 
finding is consistent with those of Pantsar et al. [48], who 
observed that molecular interactions and active site binding 
were better indicators of inhibition than docking scores. 
According to Lipinski’s rule of five and the results in        
Table 5, all these six compounds (i.e., 7, 15, 16, 18, 30 and 
31) can be used as drug candidates as none of them had 
more than one violation [46,49,50]. 
 
CONCLUSIONS  
 
      In this study, the  antiproliferative  effects  of  chalcones  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. 7:7 with 2AXA. 

  Table 4. Binding Affinities and Types  of  Interactions between  the Lead Compounds and R-Bicalutamide and the Receptor,  
                 2AXA 
 

Molecules Binding affinity 
 (kcal mol-1) 

Amino acid Interaction 
(s) 

7 -8.595 PHE 764 Pi-Pi stacking 
15 -7.562 PHE 764 Pi-Pi stacking 
16 -7.871 PHE 764 Pi-Pi stacking 
18 -8.033 PHE 764 Pi-Pi stacking 
30 -9.287 PHE 764, ASN 705 Pi-Pi stacking, hydrogen bonding  
31 -8.439 PHE 764, TRP 741 Pi-Pi stacking, Pi-Pi stacking 
R-Bicalutamide -8.653 PHE 764, ASN 705, ARG 752 Pi-Pi stacking, hydrogen bonding, hydrogen bonding 

 
 

                     Table 5. Drug-Like Properties of Some of the Lead Compounds 
 

Molecules MW SASA Donor HB Accpt HB QPlogPo/w Lipinski violations 
7 313.13 584.61 0 2 5.31 0 
15 266.13 565.87 1 2 4.22 0 
16 283.17 579.01 0 2 4.88 0 
18 385.27 694.22 0 1 7.29 1 
30 356.25 621.21 1 1 7.48 1 
31 373.29 626.91 0 1 6.98 1 

                   Note. SASA = solvent accessible surface area (300-1000), Mw = molecular weight (< 500), donorHB =  
                   hydrogen  bond  donor (<5),  accptHB = hydrogen  bond  acceptor  (<10),  and  QPlog Po/w = octanol/ 
                  water partition coefficient (2.0-6.5). 
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and dihydropyrazole derivatives on PCa via AR were 
investigated. The developed model for the antiproliferative 
activities of chalcones and dihydropyrazole derivatives in 
PCa was thoroughly validated, and it was found to be 
robust. A reduction in the negative coefficient of descriptors 
and an increase in the positive coefficient of descriptors 
were found to enhance the bioactivities of chalcones and 
dihydropyrazole derivatives in PCa. The model with an 
R2

pred of 0.737 and a coefficient R2 of 0.8305 showed a 
strong correlation between the experimental activities and 
the predicted activities and had a good predictive ability. 
The selected model was further enhanced by the ELM-Sine. 
Pi-pi stacking and hydrogen bond interactions showed the 
inhibitory effects of the chalcones and dihydropyrazole 
derivatives on AR. Accordingly, it can be stated that 
chalcones and dihydropyrazole derivatives have the 
potential to serve as anti-prostate cancer agents. A 
combined QSAR, machine learning, molecular docking, and 
drug-like screening model adopted in this study revealed six 
lead compounds, including 7, 15, 16, 18, 30 and 31, which 
were drug-like and showed anti-prostate cancer activity. 
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