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      Acetylcholinesterase is a promising therapeutic candidate for the treatment of neurodegenerative disorders, acetylcholine dysfunction, 
and other cognitive problems. In the current study, a 3D-QSAR approach was applied to a series of benzimidazole derivatives to reveal the 
key influencing factors contributing to their acetylcholinesterase inhibition activity and selectivity. The developed two models, CoMFA 
and CoMSIA, were found to be internally validated using a training set of compounds, and both models demonstrated significant statistical 
reliability. Contour maps of developed models were employed to examine the main structural characteristics of inhibitors that affected their 
potency. It was found that electrostatic and hydrophobic interactions are significantly important for improving the inhibitory activities, 
leading to the design of four novel acetylcholinesterase inhibitors. Among the newly designed compounds, compound A1 with the highest 
predicted activity was subjected to detailed molecular docking and compared to the most active compound. Furthermore, 100 ns molecular 
dynamics (MD) simulation was conducted to explore the binding modes and conformational modifications throughout the interaction of 
compound A1 and acetylcholinesterase. The docking and MD simulation findings showed that the newly designed compound A1 remained 
stable within the active site of the identified acetylcholinesterase receptor, demonstrating its promising role as a new potential 
acetylcholinesterase drug candidate. 
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INTRODUCTION 
 
      Alzheimer’s disease (AD) is a chronic persistent 
neurodegenerative disorder, which is a highly complicated 
dementia affecting millions of people worldwide with an 
increasing tendency [1]. AD, the most prevalent type of 
dementia among the elderly, is a progressive 
neurodegenerative disorder of the central nervous system 
caused by a degenerative brain condition [2]. AD typically 
presents as a progressive decline of memory initially, which 
is  followed  or   accompanied   by   cognitive  impairments, 
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executive problems, mood disturbances, impaired linguistic 
efficacy, visuospatial abnormalities, and other cognitive 
dysfunctions which eventually lead to death [3-5]. Although 
the pathogenesis of AD is still unknown, researchers have 
discovered that several factors are believed to play a crucial 
role in its initiation and progression. Low acetylcholine 
(ACh) levels, neurofibrillary tangles caused by tau-hyper 
phosphorylation as well as amyloid-β (Aβ) deposits and its 
extracellular plaques, oxidative stress, and amyloid β 
protein aggregation are considered as the characteristic 
pathological manifestations [6-9]. Acetylcholine is an 
essential neurotransmitter highly correlated with memory 
function and learning process [10]. At the cellular level, 
cholinergic deficiency in the synaptic process  is  associated 
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with AD, reducing cortical cholinergic neurotransmission 
[11]. Improvement of the activity of cholinergic neurons 
seems to be the only way to develop potent drugs for the 
management of AD. It is carried out by modulating the 
levels of the neurotransmitter acetylcholinesterase (AChE) 
in the central nervous system. Acetylcholinesterase is a 
crucial enzyme that rapidly breaks down the 
neurotransmitter acetylcholine and ultimately terminates the 
cholinergic transmission on the postsynaptic membrane 
[12]. Inhibition of AChE causes acetylcholine accumulation 
in the synapses; this enhances the effects of acetylcholine, 
enhances the cholinergic nervous system function, and 
induces intellectual capabilities [13]. Thus, inhibition of 
AChE represents an important target for the control of AD.  
      To date, several AChE inhibitors have been reported, 
among which, o/p-propoxyphenylsubstituted-1H-
benzimidazole derivatives developed by Sarikaya et al. [14] 
have been paid much more attention as AChE inhibitors to 
evaluate the cholinesterase inhibition activity. A series of 45 
benzimidazole derivatives with potent and selective affinity 
for acetylcholinesterase has been selected for this study to 
derive a relationship between their structures and activities 
in detail. Several computational approaches have been 
applied through DFT and 3D-QSAR for optimizing and 
finding novel molecules as potent acetylcholinesterase 
inhibitors. The detailed binding modes of benzimidazole 
compounds against acetylcholinesterase were explored to 
ensure the reliability of the 3D-QSAR analysis through 
molecular docking and MD simulation. This study is 
expected to provide theoretical guidance for the exploration, 
prediction, and design of novel agonists against 
acetylcholinesterase.  
 
MATERIALS AND METHODS 
 
Experimental Data 
      A dataset of 45 benzimidazole derivatives previously 
evaluated for acetylcholinesterase inhibition activity IC50 
(µM) was selected for this study [14]. The 36 compounds 
were utilized as the training set for model generation, and 
the remaining 9 compounds were utilized as an independent 
test set (superscript * in Table 1) or for model validation. 
The experimental AChE inhibition activity was converted 
into pIC50, so as to be used as a dependent variable in the 
QSAR  analysis.  The  structures  and  experimental  activity 
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Fig. 1. Chemical structures of the studied compounds. 
 
 

values of compounds are listed in Table 1. Figure 1 shows 
the chemical structures of the studied compounds. 

 
Minimization and Optimization  
      The structures were built using the SYBYL-X 2.0 
program and optimized under Tripos force field by energy 
minimization [15,16]. The convergence criterion assigned to 
these structures by Gasteiger-Huckel was 0.01 kcal mol-1 
[17]. The most active and designed compounds, employed 
as a data set for the following studies, were optimized by 
the DFT method B3LYP/6.311(d,p) basis set level using 
Gaussian software (09, Gaussian Inc., Wallingford, CT, 
USA) to achieve the equilibrium geometry for each 
compound [18].  

 
Molecular Alignment 
      3D structural alignment is one of the most important 
steps used to derive robust and reliable 3D-QSAR models. 
Herein, compound 11 with the strongest AchE inhibitory 
activity was utilized as the structural template and its 2- 
phenylbenzimidazole analogue was set as a common core 
for alignment using the simple alignment method in Sybyl 
[19]. The minimized structures were employed for CoMFA 
and CoMSIA analyses as the primal conformations.          
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Table 1. Chemical Structures of Benzimidazole Derivatives  
                with (AChE) Inhibitory Activities 
 
No. Position R1 R2 R3 pIC50 
1* Para H H -N(C2H5)2 5.12 
2 Para H H Pyrrolidine 5.12 
3 Para H H Piperidine 5.07 
4 Para CH3 H -N(C2H5)2 5.55 
5 Para CH3 H Pyrrolidine 5.19 
6 Para CH3 H Piperidine 5.35 
7 Para Cl H Pyrrolidine 5.57 
8 Para Cl H Piperidine 5.58 
9 Para NO2 H -N(C2H5)2 6.53 
10 Para NO2 H Pyrrolidine 6.52 
11 Para NO2 H Piperidine 6.85 
12* Para CN H -N(C2H5)2 6.29 
13 Para CN H Pyrrolidine 6.02 
14 Para CN H Piperidine 6.16 
15 Para OCH3 OCH3 -N(C2H5)2 6.05 
16 Para OCH3 OCH3 Pyrrolidine 6.35 
17 Para OCH3 OCH3 Piperidine 5.75 
18* Ortho H H -N(CH3)2 5.13 
19* Ortho H H -N(C2H5)2 5.18 
20 Ortho H H Pyrrolidine 4.14 
21 Ortho H H Piperidine 5.09 
22 Ortho H H Morpholine 4.95 
23* Ortho CH3 H -N(CH3)2 5.15 
24* Ortho CH3 H -N(C2H5)2 5.11 
25* Ortho CH3 H Pyrrolidine 5.14 
26 Ortho CH3 H Piperidine 5.23 
27 Ortho CH3 H Morpholine 4.08 
28 Ortho Cl H -N(CH3)2 5.13 
29 Ortho Cl H -N(C2H5)2 5.18 
30 Ortho Cl H Pyrrolidine 4.19 
31 Ortho Cl H Piperidine 5.2 
32 Ortho NO2 H -N(CH3)2 4.98 
33 Ortho NO2 H -N(C2H5)2 5.12 
34 Ortho NO2 H Pyrrolidine 5.54 
35 Ortho NO2 H Piperidine 4.92 
36* Ortho NO2 H Morpholine 4.71 
37 Ortho CN H -N(CH3)2 5.12 
38 Ortho CN H -N(C2H5)2 5.13 
39 Ortho CN H Piperidine 4.25 
40 Ortho CN H Morpholine 5.12 
41 Ortho OCH3 OCH3 -N(CH3)2 4.18 
42 Ortho OCH3 OCH3 -N(C2H5)2 5.11 
43* Ortho OCH3 OCH3 Pyrrolidine 4.13 
44 Ortho OCH3 OCH3 Piperidine 5.05 
45 Ortho OCH3 OCH3 Morpholine 5.09 
*Test molecules. 

 

     
Fig. 2. Core (left) and aligned molecules (right) using  

                  molecule 11 as a structural template. 
 

 
Figure 2 shows the core and superimposed structures of 
aligned molecules.   
 
Development of 3D-QSAR Models 
      In the present work, the 3D-QSAR study was carried out 
using the two most classical methods in SYBYL, CoMFA, 
and CoMSIA upon the alignments to correlate the structures 
with inhibitory activity [20,21]. CoMSIA and CoMFA 
analysis were developed to analyze quantitatively the steric, 
electrostatic, hydrogen bond acceptor (HBA) hydrogen 
bond donor (HBD), and hydrophobic effects fields. 3D-
QSAR analysis was performed using SYBYL in standard 
settings. As a final point, partial least square analysis was 
performed in which the value of column filtering was set at 
2.0 kcal mol-1 with 30 kcal mol-1 as the  y cutoff [22]. 
 
Partial Least Square (PLS) Analysis 
      PLS analysis method was adopted to build a linear 
relationship between the structural parameters and 
biological activities [23]. The optimum number of 
components (N) and the coefficient of cross-validation 
correlation (Q2) were calculated by the leave-one-out (LOO) 
method. The correlation coefficient (R2), the standard error 
of estimate (SEE) and the F-test value (F) were obtained by 
the non-cross validation procedure using the previously 
acquired N value. Hence, the optimal resulting 3D-QSAR 
model was chosen on the basis of the high values of Q2 and 
R2 (Q2 > 0.50 and R2 > 0.60) [24,25]. Additionally, an 
optimal number of components and low standard error 
estimation (SEE) are required conditions for a robust QSAR 
model with more reliable predictability. External validation 
was also employed to assess the reliability of the generated 
models by the testing set, as it is the most valuable 
validation process, where the required condition  (rext

2 > 0.6) 
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must be satisfied [26]. 
 
Y-Randomization Test 
      The Y-Randomization test is generally utilized to 
confirm the strength of the generated models [27]. The 
dependent variable (-logIC50) is shuffled at random. The 
QSAR calculation process is replicated several times, 
yielding a new set of 3D-QSAR models for each iteration. 
The low values of Q2 and R2 indicate the efficiency and 
reliability of the optimal models. 
 
Molecular Docking 
      Molecular docking, as a powerful approach, was 
employed using the Surflex-Dock module/Sybyl 2.0 to 
discover the structural interaction mechanism between 
ligands and the AchE receptor. The optimized selected 
compounds obtained from the DFT study were the starting 
structures of each following simulation. The crystal 
structure of 1EVE was provided by the RSCB Protein Data 
Bank. Using the Discovery Studio 2016 software, all water 
molecules and the original ligand were separated from the 
protein, and the binding modes were visualized using 
PyMOL software [28,29]. The preparation steps for the 
docking protocol were applied to establish molecular 
docking. The AutoDock Vina method [30] was utilized to 
further validate the findings of surflex-dock docking 
analysis of selected ligands. The output from the studies of 
ligand-protein interactions was analyzed using the 
AutoDock Tools version1.5.4 [31]. The binding 
conformation between the receptor and the newly designed 
molecule with the highest-dock score was studied and 
chosen for further MD simulation. 
 
Molecular Dynamics (MD) Simulation 
      MD simulation was performed to analyze the stability 
and probe the dynamic conformational changes of the 
selected complexes using YASARA Dynamics software 
[32]. The protein-designed molecule complex obtained from 
  
 
 
 
 
 

 
 
molecular docking was the initial structure used for MD 
simulation. The molecular receptor topology files were 
created using the Leap module. The force field parameters 
for MD simulation and data analysis were obtained using 
the AMBER 14 force field [33]. The simulation was run 
using a periodic boundary condition, with the cell size being 
20 Å larger than the protein. During the MD simulations, 
the electrostatic interaction within the periodic boundary 
conditions was calculated using the particle-mesh Ewald 
(PME) method [34]. The system was solvated in a 
rectangular water box with TIP3P water molecules and 
neutralized by adding the appropriate counter ions (Cl- or 
Na+) at 298 K temperature. The TIP3P solvent system is 
known to afford the best experimental results with a 
combination of AMBER14 force field. Subsequently, the 
temperature was kept constant during the following 
production stages by using the Berendsen algorithm. Using 
the steepest gradient approach (5000 cycles), the 
minimization of the solvent system was carried out by the 
simulated annealing method to avoid possible crashes 
between heavy atoms. The cut-off radius and time step 
values were set at 0.8 Å and 1.25 fs for the overall 
simulations. Finally, each system was subjected to a 100 ns 
MD simulation, with the trajectory of the simulated system 
changing every 100 ps. The root-mean-square deviation 
(RMSD), root-mean-square fluctuation (RMSF), gyration 
radius (Rg), solvent accessible surface area (SASA), 
dihedral angle, and secondary structure analysis were 
recorded at 100 ns. 
 
RESULTS AND DISCUSSION  
 
3D-QSAR Analysis 
      Internal and external validations were important criteria 
for measuring the robustness of the 3D-QSAR model. The 
statistical results of the 3D-QSAR PLS analyses are 
presented in Table 2. The experimental and predicted  
pIC50 of molecules are listed in Table 3. Table 3 shows  the  
 
 
 
 
 
 

Table 2. PLS Satistics Parameters 
 

Fractions  
Model 

 
Q2 

 
R2 

 
SEE 

 
F 

 
N 

 
rext

2 Ster Elect Acc Don Hyd 
CoMFA 0.655 0.870 0.283 73.759 1 0.731 0.564 0.436 - - - 
CoMSIA 0.643 0.852 0.301 63.543 1 0.710 0.185 0.337 0.248 0.087 0.143 

 



 

 

 

Benzimidazole Derivatives in Identifying Novel Acetylcholinesterase Inhibitors/Phys. Chem. Res., Vol. 10, No. 2, 237-249, June 2022. 

 241 

 
 
 Table 3. Experimental    and    Predicted   Activities  of  45  
                 Benzimidazole Analogues 
 

CoMFA CoMSIA  
No. 

 
pIC50 

Predicted Residuals Predicted Residuals 

1* 5.12 5.21 -0.09 5.25 -0.13 
2 5.12 5.41 -0.29 5.33 -0.21 
3 5.07 4.90 0.17 4.90 0.17 
4 5.55 5.69 -0.14 5.68 -0.13 
5 5.19 5.49 -0.3 5.48 -0.29 
6 5.35 5.46 -0.11 5.48 -0.13 
7 5.57 5.62 -0.05 5.61 -0.04 
8 5.58 6.02 -0.44 5.97 -0.39 
9 6.53 6.29 0.24 6.32 0.21 
10 6.52 6.32 0.20 6.38 0.14 
11 6.85 6.36 0.49 6.39 0.44 
12* 6.29 6.11 0.18 6.13 0.16 
13 6.02 6.18 -0.16 6.23 -0.21 
14 6.16 6.06 0.10 6.09 0.07 
15 6.05 5.99 0.06 5.95 0.10 
16 6.35 6.11 0.24 6.10 0.25 
17 5.75 5.84 -0.09 5.77 -0.02 
18* 5.13 4.72 0.41 4.81 0.32 
19* 5.18 5.56 -0.38 5.53 -0.35 
20 4.14 4.14 0 4.19 -0.05 
21 5.09 4.99 0.10 4.93 0.16 
22 4.95 4.65 0.30 4.75 0.20 
23* 5.15 5.25 -0.10 5.18 -0.03 
24* 5.11 5.18 -0.07 5.09 0.02 
25* 5.14 5.20 -0.06 5.13 0.01 
26 5.23 5.03 0.20 4.94 0.29 
27 4.08 4.33 -0.25 4.29 -0.21 
28 5.13 5.18 -0.05 5.12 0.01 
29 5.18 5.38 -0.20 5.28 -0.10 
30 4.19 4.35 -0.16 4.34 -0.15 
31 5.20 5.40 -0.20 5.32 -0.12 
32 4.98 5.16 -0.18 5.32 -0.34 
33 5.12 5.05 0.07 5.12 0 
34 5.54 5.37 0.17 5.37 0.17 
35 4.92 5.24 -0.32 5.24 -0.32 
36* 4.71 4.63 0.08 4.65 0.06 
37 5.12 5.07 0.05 5.15 -0.03 
38 5.13 5.17 -0.04 5.26 -0.13 
39 4.25 4.20 0.05 4.20 0.05 
40 5.12 5.09 0.03 5.21 -0.09 
41 4.18 4.09 0.09 4.20 -0.02 
42 5.11 5.25 -0.14 5.20 -0.09 
43* 4.13 4.12 0.01 4.12 0.01 
44 5.05 5.20 -0.15 5.24 -0.19 
45 5.09 5.20 -0.11 5.25 -0.16 

 
 
experimental and predicted pIC50 of training and test set 
molecules. 
      For internal validation, the CoMFA model shows an 
acceptable cross-validation correlation Q2 value of 0.655 for 
the training set with an excellent R2 of 0.870, the lowest 
SEE of 0.283, F-test of 73.759 and N of 1, indicating that 
this generated model is reliable. The both steric and 
electrostatic fields contributed to 56.4% and 43.6% of the 
total contribution, respectively, revealing that the steric field 
played a more significant role. The best CoMSIA model had 
a Q2 of 0.643 and an optimized component of 1, as well as 
an excellent R2 of 0.852, the lowest SEE of 0.301, and          
F-test value of 63.543, which was indicative of the good 
internal predictability of this model. The ratios of steric, 
electrostatic, HBA, HBD, and hydrophobic sites in the 
model were 18.5%, 33.7%, 24.8%, 8.7%, and 14.3%, 
respectively, revealing that electrostatic and hydrophobic 
fields had a greater impact on the model. 
      External validation revealed that CoMFA and CoMSIA 
had excellent predictive power, with rext

2 values of 0.731 
and 0.710, respectively, indicating that the external 
predictability of both models rose up to the standard. 
 
Contour Map Analysis 
      The contour maps of the 3D-QSAR models could 
visually explore significant structural features for the 
improvement of activity. The structural modification 
process in certain areas based on the useful information 
provided by the contour maps would rationally guide lead 
optimization. The structure of compound 11 was overlaid on 
the contours as a reference for the explanation. 
      CoMFA contour maps. Figure 3a shows the CoMFA 
steric contour map, with green (80% contribution) and 
yellow (20% contribution) colors indicating sterically 
favorable and unfavorable contours, respectively. 
Compound 11 had a broad green contour around R3, 
illustrating that raising the volume at R3 would be 
beneficial to activity. Compound 11 (pIC50 = 5.658), for 
example, presented a large substituent in R3 and had          
higher activity than compounds 9 (pIC50 = 4.59) and           
10 (pIC50 = 5.143). A yellow contour appeared at R1, 
which expressed the need to decrease the volume of R1. 
Therefore, compound 12 possessing a less bulky substituent 
in this position increases the potency. 
      Figure 3b shows the CoMFA electrostatic  contour map, 
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a)                                                              b) 

    
Fig. 3. Std*coeff. Contour maps of CoMFA analysis for  
           compound  11.  a) Steric  fields;  b) Electrostatic  

               fields. 
 
 
where the negative electrostatic favorable contours are 
represented in red (20% contribution) and the unfavorable 
contours in blue (80% contribution). There was a blue 
contour near the benzimidazole scaffold, indicating 
substituents with positive charges may improve the activity. 
This can be verified by the high value of activity of 
compound 16 holding the –OMe substituent over compound 
7 (Cl), taking into consideration that both possess the same 
substituent (Pyrrolidine) at R3.  
      CoMSIA contour map. The steric and electrostatic 
contours of CoMFA provide similar findings to those of the 
CoMSIA model. As a result, only H-bonding and 
hydrophobic contour maps were investigated. 
      Figure 4a shows a hydrophobic contour map, with the 
white contours (20% contribution) indicating the favorable 
region for hydrophilic substituents and with the yellow 
contours (80% contribution) indicating an unfavorable 
region for hydrophilic substituents. There were two small 
white contours around R3, which indicated that the increase 
in the hydrophilicity of R3 could improve the activity. 
Furthermore, a yellow contour near the phenyl substitution 
in the ortho position of the benzimidazole scaffold indicated 
that increasing the hydrophobicity of the substituent would 
aid in the increase in activity in the corresponding regions. 
      H-bond acceptor and donor contour maps are shown in 
Fig. 4b and Fig. 4c, respectively. Cyan (80% contribution) 
and red (20% contribution) contours represent that adding 
H-bond donor groups has a positive effect on activity, while 
the purple (20% contribution) and magenta (80% 
contribution) contours denote that H-bond donor groups 
have a negative impact on potency. The purple contour 
around the nitro group (R1) showed that substituting an H-
bond acceptor in this position could improve activity. The 
necessity of the H-bond donor –NH group was revealed by 
the red contour near the N position of benzimidazole, which 

 
 
is beneficial to its inhibitory activity. 
 
Y-Randomization Test 
      Table 4 shows the results of seven random shuffles for 
the Y-randomization test. The Q2 and R2 values obtained by 
the seven iterations were extremely low, according to the  
Y-randomization test. Consequently, the possibility of a 
chance correlation was ruled out, which indicates that the 
two obtained models are very trustworthy, good and highly 
reliable.  
 
Newly Designed Compounds  
      The chemical information acquired from contour maps 
was utilized to define the structural features of 
acetylcholinesterase  inhibitors  to  design new  ligands with 
 

a)                                                                                      b) 

 
c) 

 
Fig. 4. Std*coeff. Contour maps of CoMSIA analysis for  

              compound 11.  a) Hydrophobic  field;  b) H-bond  
              acceptor fields; c) H-bond donor fields. 
 
 
Table 4. Q2 and R2 Values of the Y-Randomization Test 

 
CoMFA CoMSIA Iteration 

Q2 R2 Q2 R2 
1 0.305 0.378 0.341 0.402 
2 0.099 0.107 0.112 0.131 
3 -0.088 0.102 -0.034 0.167 
4 0. 008 0.084 0.059 0.105 
5 0.144 0.198 0.132 0.187 
6 -0.105 0.125 -0.084 0.103 
7 0.124 0.216 0.137 0.246 
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an increased potency profile. Hence, through modifying the 
R1, R2, and R3 structures of the benzimidazole scaffold, 
four new compounds with high acetylcholinesterase 
inhibitory activities have been designed in silico. Table 5 
shows the structures of four newly designed inhibitors, their 
predicted activity, pIC50, total score, as well as binding 
energy. The predicted activity values of the designed 
compounds were in the range of (6.912-6.859) and (6.870- 
6.827) for the CoMFA and CoMSIA models, respectively. 
The predicted activities of the four compounds were much 
greater not only than that of compound 11, but also than its 
experimental activity. 
 
Molecular Docking  
      In the present study, to reveal the optimal binding 
patterns between small molecules and proteins, molecular 
docking was conducted using the Surflex-Dock method. 
The statistical result of molecular docking was expressed in 
Total Score, predicting the correlation of ligand-based on 
the structure of the receptor. As shown in Table 4, the newly 
designed compound A1 had a higher docking score than 
compound 11, which is in agreement with its predicted 
activity and AutoDock Vina score. The conformation that 
possessed the high Total Score (compound A1) was selected 
for further detailed analysis and compared to compound 11. 
Figure 5   depicts   the   active  site  of  acetylcholinesterase, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

 
Fig. 5. 2D structure and interaction of designed compound  

             A1 with acetylcholinesterase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Table 5. New Proposed Molecules and their Predicted pIC50, Total Score and Binding Energy 
 

 
 

Predicted pIC50 
Total score Binding energy 

(kcal mol-1) 
 
 
No. 

 
 

R1 

 
 

R2 

 
 

R3 CoMFA CoMSIA Surflex dock Autodock Vina 
The most active compound 
Comp.11 NO2 H Piperidine 6.36 6.39 4.6201 -7.3 
The newly designed compounds 
A1 NO2 H -N(CH3)2 6.912 6.870 4.7948 -7.4 
A2 NO2 NH2 Piperidine 6.881 6.84 4.0395 -6.8 
A3 CN H -N(CH3)2 6.862 6.827 4.2568 -7.3 
A4 CN NH2 -N(CH3)2 6.859 6.860 4.2903 -7.4 
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where the two nitrogen atoms of the piperidine ring in 
compound A1 form two hydrogen-bonding interactions with 
Tyr 121 and Asp 72. Obviously, these interactions are 
stabilizing interactions and beneficial for inhibitory activity. 
In addition, His 440 formed two carbon-hydrogen bonding 
interactions with the nitro group of the compound A1. Also, 
Phe 331 formed a π-π T-shaped interaction with the benzene 
moiety of the benzimidazole. The combination of these 
interactions significantly increases the stability of the 
binding. As depicted in Fig. 6, compound 11, as the most 
potent inhibitor in the series, showed a carbon-hydrogen 
bonding interaction with His 440. The –O– linker 
connecting the piperidine ring and the right phenyl moiety 
formed a lone-pair-π bonding interaction with Phe 330. 
Another lone-pair-π bonding interaction made up by Phe 
330 was in contact with the nitrogen atom of the phenyl 
moiety on the upper right side. In addition, the 
benzimidazole and central phenyl ring formed a π-π 
stacking effect with the residue Tyr 334. The binding of 
compound 11 has also been shown to be influenced by van 
der Waals and hydrophobic interactions. In comparison to 
compound 11, which has a stronger inhibitory effect on 
acetylcholinesterase, the newly designed compound A1 has 
more favorable and stabilizing interactions with the targeted 
protein. The docked poses of the newly designed compound 
A1 and compound 11 inside acetylcholinesterase were 
depicted in Fig. 5 and Fig. 6, respectively. 
      The docking findings were compared to the 3D-QSAR 
results to ensure that the two were in agreement. Thus, the 
binding interactions were consistent with hydrogen bonding 
and hydrophobic contour maps. These findings indicate that 
the newly designed compound A1 binds to the binding site 
of acetylcholinesterase with great compatibility. The docked 
conformation of the newly designed compound A1 with 
acetylcholinesterase was utilized as an input for molecular 
dynamics simulations.  
 
Molecular Dynamics Simulation 
      To investigate the dynamic behavior of a protein after 
ligand binding, a 100 ns MD simulation was run using the 
protein-designed molecule complex A1 to ensure the 
stability of the predicted binding of the complex system. 
Figure 7a displays the RMSD of the heavy atoms of 
acetylcholinesterase  over  100 ns.  The  RMSD  of  protein- 

 
 

 
Fig. 6. 2D structure and interaction of compound 11 with  

              acetylcholinesterase. 
 
 
designed molecule complex A1 fluctuated between 0.42 and 
1.68 Å during the MD simulations, and the averaged RMSD 
was found to be 1.43 Å. From 0 to 40 ns, the curve of 
complex A1 rose slightly to the value of approximately  
1.68 Å, and then an equilibrated system was obtained in 
complex A1 within the rest of the time. RMSD analysis 
indicated that the designed molecule A1 formed a stable 
complex with the protein throughout the simulations. 
      To investigate the impact of designed molecule binding 
on the internal dynamics of the target protein during 100 ns, 
RMSF values were also calculated. It can be seen from        
Fig. 7b that a maximum fluctuation of 5.9 Å is noticed in 
the loop region of residue 550 and a high fluctuation of        
4.6 Å is detected in the loop region close to residue 380. 
Although minimal fluctuations were observed during the 
interaction of protein and designed compound A1, most of 
these fluctuations were lower than 3 Å, indicating that           
the binding strength between compound A1 and protein            
is strong. Meanwhile, the protein was more affected by          
the movement of the  corresponding  ligand  in  the  studied  
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c 

 
Fig. 7. MD simulation trajectory analysis. a. RMSD of the  
           whole    protein  of    protein-designed     molecule  
           complex. b. RMSF of  protein-designed  molecule  
          complex.  c.  Rg   of   protein-designed   molecule  

              complex. 
 
 
system. RMSF analysis indicated that binding of designed 
compound A1 to the target protein presented a slightly non-
significant fluctuation, indicating that there were no 
significant changes in protein conformation as a result of the 
ligand binding. 
      The gyration radius (Rg), which represents the change in 
protein structure compactness over time, was measured 
(Fig. 7c). In the first 37 ns, the Rg values varied between 
22.91 Å and 23.31 Å. However, after this time until the 
simulation ended, the values remained reasonably  stable in 

 
a 

 
b 

 
Fig. 8. Solvent accessible surface area (SASA) and dihedral  
           angle.  a.  SASA    of     protein-designed    molecule  
           complex.  b.   Dihedral   angle   of  protein-designed  

             molecule complex. 
 
 
the range of 22.96 to 23.26. The Rg graph shows that there 
is no major change in the compactness of the folding of the 
target protein after the binding of the designed molecule A1. 
Similarly, the SASA analysis was explored to identify          
the solvent accessibility of the protein-ligand complex          
(Fig. 8a). During the last 30 ns, SASA was observed to be in 
the range of 20486 to 213404 Å, with one fluctuation at 86 
ns, and then stabilized as the simulation progressed, 
indicating the crucial role played by the major part of the 
newly designed compound A1 in the cavity of its binding to 
the receptor. This displays that the number of hydrophobic 
amino acids hidden inside the protein was basically 
unchanged and the structure of proteins was relatively stable 
after the binding of compound A1 to the catalytic pocket 
during the simulation time. 
      Furthermore, the dihedral angle of the protein-designed 
molecule was also studied to quantify the conformational 
flexibility of compound A1 when bound to 
acetylcholinesterase. As depicted in Fig. 8b, dihedral 
transitions  were   absent   during   the   simulation  and   the  
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Fig. 9. Secondary structure analysis of protein-designed  

               molecule complex. 
 
 
average value of dihedral angle for compound A1 was 
found to be 126065. The results revealed that the         
system achieved equilibrium at about 29 ns and 
acetylcholinesterase in the studied system underwent very 
slight conformational changes as shown by the dihedral 
angle values. On the other hand, the evolution of dihedral 
angles of inhibitor in the system was more stable after         
29 ns. This confirms that compound A1 is conformationally 
rigid. 
      Furthermore, we conducted secondary analysis of the 
studied complex to find out the changes in the secondary 
structures induced by the binding of the designed molecule 
(Fig. 9). In the study of the change in structural behavior, 
the percentage of secondary structure content in a protein is 
an essential metric. There was no significant change in        
the secondary structure content of the newly designed 
compound A1. However, binding of compound A1 to the 
acetylcholinesterase appears to result in a modest increase 
in the residue number in the structured region. The 
involvement of more amino residues at the binding site 
might be responsible for the stability of the ligand bound 
conformation of the targeted protein. 
 
Comparison with Literature 
      For this class of acetylcholinesterase inhibitors,         
several researchers have designed and synthesized        
novel benzimidazole derivatives [35-39]. Through               
our SARs, molecular docking, and  MD  analyses,  we  have  

 
 
demonstrated that the newly designed compounds reported 
in the present work exhibited higher acetylcholinesterase 
inhibitory activity than all of the synthesized benzimidazole 
derivatives in the literature. In addition, the newly designed 
compounds, in comparison with the previously synthesized 
benzimidazole derivatives, were more active and had more 
favorable and stabilizing interactions with the targeted 
protein.  
      Our study revealed the potential binding of the newly 
designed benzimidazole based-derivative at the active site 
of the target acetylcholinesterase protein. The newly 
designed compound A1 showed better interaction with the 
targeted protein, which was revealed by hydrogen bond 
formation, hydrophobic interaction, and docking pose of the 
compound A1. At the same time, active site residues in the 
binding site such as Tyr 121 and Asp 72 were involved      
in H-bond interactions with compound A1 and had a 
significant contribution to the binding process after R3 was 
modified. In addition, His 440 was involved in hydrophobic 
interactions with the same compound, which were found to 
play a crucial role in the firm binding of ligand to the 
receptor. Noticeably, the observed interactions are 
stabilizing interactions, which are beneficial for potency and 
could enable inhibitors to maintain stability in the binding 
site. Overall, the results of the current study indicate that 
compound A1 possesses acetylcholinesterase inhibition 
potential and could serve as a potential source of the lead 
molecules for anti-Alzheimer drug discovery. The detailed 
understanding of the complexity of ligand-receptor 
interactions might be attained by utilizing different ligand-
binding assays such as structure-based (X-ray and NMR), 
label-free, labeled, and whole cell ligand-binding methods. 
So we firmly believe this is an important theoretical basis 
for designing novel benzimidazole derivatives as potent 
inhibitors of acetylcholinesterase for the treatment of 
Alzheimer disease. 
 
CONCLUSIONS 
 
      In-silico analysis was used successfully to gain insight 
into the critical structural aspects of benzimidazole 
derivatives and their inhibition mechanism. The CoMFA 
and CoMSIA models developed in the 3D-QSAR study        
had satisfactory  predictive  ability. Based on the  chemical  
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features unveiled by 3D-QSAR contour plot analysis, four 
novel inhibitors were designed by making appropriate 
substitutions for the benzimidazole derivative, among which 
compound A1 with the highest predicted activity was 
subjected to molecular docking, and their possible binding 
patterns were investigated and compared to those of the 
most active compound 11. Through prediction of activity 
and molecular docking, compound A1 was selected for 
detailed 100ns MD simulation analysis due to its highly 
predicted activity, docking score and binding affinity. The 
MD simulation analysis demonstrates that the ligand closely 
binds to the acetylcholinesterase active site, which confirms 
the stability of compound A1 within the biological 
environment throughout the MD simulation process. 
Consequently, the newly designed compound A1 was 
successfully identified as a potent acetylcholinesterase 
inhibitor. 
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