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      Lung cancer, the leading cause of cancer-related deaths globally, presents a formidable challenge due to delayed diagnoses and limited 

treatment options, contributing to persistently low five-year survival rates. This study aimed to identify a novel inhibitor for lung cancer 

through an exhaustive screening process. Initial exploration of a database containing over 500,000 molecules led to an ADME-Tox study, 

narrowing the selection down to 20,000 molecules. Subsequent molecular docking studies, employing SP and XP methods, revealed 

compelling candidates. From docking results, the top 250 molecules with significantly high docking scores were examined. Only two specific 

molecules, L3 with a notable docking score of -11.4 and L2 scoring -10.344, exhibited exceptional binding affinities compared to the 

reference compound (9FX), a recognized lung cancer inhibitor. These potent compounds displayed promising drug-like properties, boasting 

higher molecular weights (L2: 352.41 and L3: 341.36) compared to 9FX (342.35). Additionally, they showcased similar or superior LogP 

values (lipophilicity) and LogS values (aqueous solubility), signifying their potential for enhanced drug-like characteristics. Molecular 

dynamics (MD) simulations focusing on the protein-ligand complexes involving protein 5ZMA and the ligands L2 and L3 provided crucial 

insights. The simulations unveiled dynamic behaviors and potential adaptive structural changes within the protein-ligand complex. Notably, 

specific residues, particularly ILE-267 and LYS-494, demonstrated increased flexibility, potentially serving as pivotal hotspots for effective 

ligand binding or allosteric interactions. Our study identifies compounds L2 and L3 as strong contenders for lung cancer treatment. We 

propose advancing these compounds for further research and potential clinical trials. 
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INTRODUCTION 
 

      Lung cancer continues to pose a significant public health 

challenge, contributing to high mortality rates across the 

globe [1]. Given the disease's widespread occurrence, 

aggressive nature, and limited treatment options, there is a 

pressing need for innovative approaches that can lead to 

improved patient outcomes and ultimately overcome this 

formidable disease [2]. One crucial aspect in the battle 

against lung cancer is early detection and timely intervention 

[3].   Identifying   lung   cancer  at   its   earliest   stages   can  
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significantly increase the chances of successful treatment and 

positive outcomes for patients [3]. However, due to the lack 

of specific symptoms in the early stages, lung cancer is often 

diagnosed at more advanced stages, making it difficult to 

treat effectively. Therefore, there is a critical need for 

improved diagnostic tools and strategies that can detect lung 

cancer at an early and potentially curable stage [4]. In 

addition to early detection, finding effective treatment 

options is essential [5]. Lung cancer is a complex disease 

with various subtypes and molecular pathways involved. 

Traditional treatment approaches such as chemotherapy               

and radiation therapy have limitations in terms of                       

their   effectiveness  and   potential  side  effects.  Therefore,  
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researchers are actively exploring novel therapeutic agents 

that specifically target the molecular pathways associated 

with lung cancer. These targeted therapies aim to disrupt the 

specific mechanisms that promote cancer growth and 

progression while minimizing harm to healthy cells [6]. 

However, the process of discovering and developing these 

targeted therapies can be time-consuming and costly. It 

typically involves screening large compound libraries to 

identify potential drug candidates, followed by extensive 

preclinical and clinical testing. This process can take several 

years and involves substantial financial investments [7]. 

Therefore, finding ways to expedite this process without 

compromising safety and efficacy is of utmost importance 

[8]. This is where computational methods come into play. By 

leveraging the power of computational tools and techniques, 

researchers can efficiently screen vast libraries of chemical 

compounds to identify potential drug candidates with desired 

properties for inhibiting lung cancer. These virtual screening 

techniques employ various algorithms and models to predict 

the likelihood of a compound binding to specific target 

proteins involved in lung cancer [9]. Once potential 

compounds have been identified, molecular docking 

techniques are employed to assess the strength and stability 

of the interactions between the selected compounds and the 

target proteins. Molecular docking simulations provide 

valuable insights into how the compounds fit into the three-

dimensional structure of the target proteins and how tightly 

they bind. This information helps researchers prioritize and 

select the most promising candidates for further investigation 

[10]. Furthermore, molecular dynamics simulations are used 

to study the dynamic behavior of the selected compound-

protein interactions over time. These simulations provide a 

detailed understanding of the complex's structural properties, 

flexibility, and stability. By exploring the complex's behavior 

at the molecular level, researchers can gain insights into its 

potential efficacy as a therapeutic agent and predict how it 

might interact with other components in the biological 

system [11]. The integration of computational approaches 

with traditional experimental techniques in the drug 

discovery process offers numerous advantages. It allows 

researchers to explore a significantly larger chemical space, 

saving time and resources by narrowing down the search for 

potential inhibitors. Computational methods also enable the 

identification  of  compounds  with  specific  properties  and  

 

 

mechanisms of action, potentially leading to more targeted 

and personalized treatment options [12]. Ultimately, the 

primary objective of utilizing computational tools in the 

quest for a potential inhibitor against lung cancer is to 

accelerate the drug discovery process. By efficiently 

screening compound libraries, performing molecular 

docking, and conducting molecular dynamics simulations, 

researchers can expedite the identification and development 

of novel drugs for lung cancer. These computational 

approaches hold great promise in advancing personalized 

treatment options and improving patient outcomes in the 

battle against this devastating disease [13]. In conclusion, 

lung cancer remains a significant public health challenge, but 

the integration of computational methods into the drug 

discovery process provides a cost-effective and efficient 

means to accelerate progress. Through virtual screening, 

molecular docking, and molecular dynamics simulations, 

researchers can narrow down the search space, gain valuable 

insights into the interactions between potential inhibitors and 

target proteins, and potentially uncover breakthrough 

treatments for lung cancer. These computational approaches 

offer hope for a future where personalized therapies and 

improved patient outcomes become a reality in the fight 

against lung cancer [14]. 

 
MATERIAL AND METHODS 
 

Collection of Compound Database  
      A diverse set of compounds has been retrieved from 

PubChem, a comprehensive repository of chemical structures 

and bioactivity data [15]. The database provides a rich source 

of potential drug candidates for our study. The collected 

compounds undergo optimization using Schrödinger 

Maestro, a powerful software suite for molecular modeling 

and simulations, to improve their conformations [16]. The 

protonation state of each compound is determined, 

considering the pH conditions relevant to the target protein's 

binding pocket [17]. Additionally, stereoisomer generation is 

performed to explore the effects of chirality on molecular 

interactions. The compounds are assigned force field 

parameters using the OPLS3 force field [18]. This step 

ensures an accurate representation of the compounds' 

energetics and interactions during subsequent computational 

simulations. 
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Protein Preparation 
      The crystal structure of the target protein, with PDB ID: 

5ZMA, is retrieved from the Protein Data Bank [19]. This 

protein is chosen based on its relevance to lung cancer and its 

known interactions with potential inhibitors. The retrieved 

protein structure undergoes refinement using Schrödinger 

Maestro [20]. This step involves correcting structural 

irregularities, optimizing hydrogen bonding, and removing 

any artifacts or non-standard residues to ensure a reliable 

protein model. Charges and bond orders are assigned to the 

protein structure, preparing it for subsequent molecular 

docking simulations. Accurate charge distributions are 

essential for capturing the electrostatic interactions between 

the protein and ligands. Water molecules and other solvent 

molecules are removed from the protein structure, as they can 

interfere with the docking process. Hydrogen atoms are 

added to the protein to restore correct bonding and improve 

accuracy during simulations. Hydrogen bond assignments 

within the protein structure are optimized to ensure the proper 

formation of critical interactions with potential ligands. 

Accurate hydrogen bonding patterns contribute to the 

reliability of docking results. The protein's amino acids are 

minimized using an appropriate force field at neutral pH 

conditions. This step optimizes the protein's conformation, 

reducing steric clashes and improving its overall stability 

[21]. 

 

Grid Box Generation 
      The receptor grid was created for the prepared protein 

[22]. The dimensions of the receptor grid box were set in each 

direction: (x = 28.64, y = 80.59, and z = 78.58) and the box 

was placed at the center of the binding pocket of the target 

protein. The grid box size was set to 20Å in each dimension 

(x, y, and z). The grid box defines the three-dimensional 

space within the protein's binding pocket where ligands will 

be docked, allowing efficient sampling of ligand 

conformations. The dimensions of the receptor grid are 

determined by analyzing the binding modes of known ligands 

within the protein's binding pocket. This ensures that the grid 

adequately covers the key interaction sites. The docking’ box 

size is set to allow sufficient space for ligands to explore 

different orientations within the binding pocket. This 

facilitates a comprehensive sampling of ligand poses. 

 

 
Molecular Dynamics Study 
      Molecular dynamics (MD) simulations are employed to 

investigate the dynamic behavior of the protein-ligand 

complex over time [27]. MD simulations utilize Newtonian 

physics principles to simulate the movements of atoms and 

molecules, providing insights into their stability, flexibility, 

and interactions. The protein-ligand complex obtained from 

the docking simulations is subjected to MD simulations to 

analyze its stability, flexibility, and molecular interactions 

[28]. This analysis helps determine the reliability of the 

binding mode and assess the complex's overall structural 

integrity. The MD simulations generate trajectories that 

reveal the behavior of the protein-ligand complex over time. 

By analyzing the conformational changes, intermolecular 

interactions, and binding dynamics, valuable insights are 

gained into the complex's behavior and its potential as a 

therapeutic target. 

 
RESULTS AND DISCUSSION  
 

Virtual Screening  
      Virtual screening is a computational technique used to 

screen large compound libraries and identify potential 

ligands that bind to a specific tar [23]. 

 
Docking SP 
      The prepared protein and the filtered compound database 

are subjected to molecular docking simulations using the 

Glide SP (Standard Precision) algorithm [24]. Docking 

scores are calculated to assess the binding affinity of each 

ligand towards the protein. Ligands with high docking scores, 

indicating favorable binding interactions with the protein, are 

identified as potential hits. We identified 250 molecules with 

high docking scores ranging from -10.019 to -8.077          

(Table 1). These molecules exhibit promising binding 

affinity and are further analyzed for their drug-like 

properties. 

 

Docking XP 
      To refine the search for potential inhibitors, a subset of 

top-scoring ligands from the SP docking is subjected to more 

accurate docking using the Glide XP (Extra Precision) 

algorithm [25]. XP docking provides a higher level of 

accuracy in predicting binding energies.  
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Table 1. The Binding Affinity of Docked Ligands in the 

5ZMA Receptor Using Docking SP 

 

Compound 
Score (Kcal 

mol-1) 
Compound 

Score  

(Kcal mol-1) 

L1 -9,658 L14 -8,685 

L2 -9,313 L15 -8,663 

L3 -9,188 L16 -8,663 

L4 -9,182 L17 -8,577 

L5 -9,075 L18 -8,567 

L6 -9,065 L19 -8,556 

L7 -8,968 L20 -8,518 

L8 -8,852 L21 -8,478 

L9 -8,79 L22 -8,443 

L10 -8,769 L23 -8,434 

L11 -8,711 L24 -8,427 

L12 -8,704 L25 -8,366 

L13 -8,688   

 

      From the XP docking results, the top 250 molecules with 

the highest docking scores are selected as potential inhibitors. 

These compounds demonstrate strong binding affinity and 

favorable interactions with the target protein, suggesting their 

potential as effective inhibitors against lung cancer. Through 

the virtual screening process, two specific molecules are 

identified as potential inhibitors against lung cancer with 

significant docking score of L3: -11.4 and L2: -10.344 

compared to the reference compound (9FX), which is a 

known lung cancer inhibitor (Table 2) [26]. These molecules 

exhibit exceptional binding affinities, favorable interactions 

with the target protein's binding pocket (Fig. 1), and 

promising drug-like properties. 

 
Molecular Dynamics Results 
      We present a detailed discussion and interpretation of the 

molecular dynamics (MD) simulations performed on a 

potential inhibitor against lung cancer [29]. The simulations 

were carried out using Schrodinger software, and the 

resulting data includes protein-ligand RMSD, protein RMSF, 

and protein-ligand contacts. Through the analysis of these 

results, we gain valuable insights into the stability, flexibility, 

and  molecular  interactions  within  the  complexes  formed 

 

 

Table 2. The Binding Affinity of Docked Ligands in the 

5ZMA Receptor Using Docking XP 

 

Compound 
Score 

(Kcal mol-1) 

L3 -11,4 

9FX -10,852 

L2 -10,344 

 

 

between the 5ZMA protein and ligands L2 and L3. 

 

Protein-Ligand RMSD 
      The protein-ligand RMSD plot provides information 

about the structural stability of the investigated complexes 

over time [30]. In the graphs shown in Fig. 2, the blue curve 

represents the RMSD of the protein backbone (C alpha), 

while the red curves correspond to the RMSD of the ligands 

L2 and L3. The Y-axis denotes the RMSD values in 

angstroms, and the X-axis represents the simulation time in 

nanoseconds. The red curve, depicting the ligand L2 RMSD, 

shows a relatively steady pattern, with the RMSD starting 

from 0 and stabilizing at around 2 Å until 20 ns. This initial 

stability suggests that the initial binding conformation is 

maintained during this period. However, after 20 ns, the 

ligand L2 experiences a sudden increase in RMSD, reaching 

up to 5 Å at approximately 45 ns. This increase indicates a 

significant conformational change or a potential binding 

event that affects the structural stability of the ligand. 

      Subsequently, from 45 ns to 65 ns, the ligand L2 shows a 

period of stabilization with minor fluctuations, suggesting 

that it adopts a new stable conformation. However, from               

65 ns to 90 ns, the ligand L2 exhibits another increase in 

RMSD, reaching up to 7.5 Å. This pattern of increasing 

RMSD with a zigzag shape indicates further structural 

changes or potential dynamic interactions. Finally, from          

95 ns to 100 ns, the ligand L2 returns to a stable position at      

5 Å.  

      For the ligand L3, the red curve starts from 0 and 

stabilizes at 2 Å until 20 ns, similar to ligand L2. This initial 

stability suggests that the initial binding conformation of L3 

is also maintained during this period. However, at      

approximately  45 ns,  the  RMSD  of  ligand  L3   increases, 
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9FX 

 

L2 

 

L3 

 
Fig. 1. 2D structures of formed complexes between analyzed 

compounds, reference compound, and 5ZMA receptor. 

 

 

 
L2 

 

L3 

Fig. 2. RMSD plots of complexes with ligands L2 and L3. 

 

 

 reaching up to 5 Å. This increase indicates a conformational 

change or potential binding event that affects the structural 

stability of L3. Following this, from 45 ns to 65 ns, ligand L3 

stabilizes with minor fluctuations. However, from 65 ns to    

90 ns, ligand L3 exhibits an increase in RMSD, reaching up 

to 7.5 Å, similar to ligand L2. This pattern of increasing 

RMSD with a zigzag shape suggests further dynamic 

behavior. Finally, from 95 ns to 100 ns, ligand L3 returns to 

a stable position at 5 Å, similar to ligand L2. These 

observations suggest that both ligands L2 and L3 undergo 

conformational changes or binding events that affect their 

structural stability during the simulation. These dynamic 

changes   in  RMSD  highlight  the  potential  flexibility  and  
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adaptability of the ligands within the protein-ligand complex 

[31]. 

 

Protein RMSF 
      The protein RMSF plot provides insights into the 

flexibility of individual residues within the protein [32]. The 

RMSF plots of the investigated complexes are presented in 

Fig. 3. The Y-axis represents the RMSF values, which 

indicate the degree of fluctuation or mobility for each residue, 

ranging from 0 to 4.5 Å. The X-axis corresponds to the 

residue index, ranging from 0 to 250. Starting from the 

maximum value of 5.4 Å, the RMSF decreases steadily until 

 

 

L2  

 

 
L3 

Fig. 3. RMSF plots of complexes of target protein with 

ligands L2 and L3. 

 

 

around residue index 10, where it reaches a minimum of                

0.6 Å. This initial decrease in RMSF suggests that the protein 

backbone and residues in the vicinity of the ligand-binding 

site exhibit lower fluctuations and higher stability. Following 

this minimum, the plot shows minor fluctuations, with 

occasional peaks reaching up to 1.9 Å. These fluctuations 

indicate the inherent flexibility of the protein residues, which 

may be involved in accommodating ligand binding or 

allosteric interactions. Notably, at residue index 55 (ILE-

267), a significant increase in RMSF (3.9 Å) is observed. 

This observation suggests that residue ILE-267 exhibits 

higher flexibility and mobility compared to other residues. 

The increased flexibility in this region may be essential for 

ligand binding or for inducing conformational changes in 

nearby residues. Similarly, at residue index 80 (LYS-494), 

there is a noticeable increase in RMSF (3.7 Å), indicating 

increased mobility. This region of higher flexibility may also 

play a role in ligand recognition or binding. These regions of 

increased flexibility at residue indices 55 and 80 may serve 

as potential hotspots for ligand binding or allosteric 

interactions. The ability of these residues to undergo 

significant fluctuations suggests their importance in the 

dynamic behavior of the protein-ligand complex [33]. 

 

Protein-Ligand Contacts 
      The protein-ligand contacts graph provides information 

on the nature and frequency of interactions between specific 

amino acids and the ligand. The protein-ligands contacts are 

highlighted in Fig. 4. The Y-axis represents the interaction 

fraction, ranging from 0 to 0.30, while the X-axis displays the 

15 selected amino acids. Most of the amino acids 

predominantly exhibit water bridges as the majority 

interaction type, followed by hydrogen bonds. Interestingly, 

only one amino acid, ALA_495, shows hydrophobic and 

hydrogen bond interactions. Moreover, the majority of the 

amino acids exhibit interaction fractions below 0.10, 

indicating weak or transient interactions. However, two 

residues stand out: ILE_267 with an interaction fraction of 

0.25 and LYS_494 with an interaction fraction of 0.33. These 

residues exhibit a relatively higher affinity towards the 

ligand, suggesting potential key binding sites. Additionally, 

ALA_495, with an interaction fraction of 0.15, also                     

shows a significant involvement in ligand binding. L3 was 

also investigated  for  protein-ligand  contacts.  The  analysis  
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L2 

 

 
L3 

 

 

Fig. 4. Protein interactions with the ligands L2 and L3 

throughout the simulation. 

 

 

revealed various interaction types between the ligand and 

specific amino acids.  

      For L3, the protein-ligand contacts showed a 

predominance of hydrophobic interactions, particularly at 

TRP_424 with an interaction fraction of 1.1 and PHE_282 

with an interaction fraction of 0.8. Additionally, H-bonds 

were observed at THR_278 with an interaction fraction of 

0.9, and minor water bridges were present. Notably, 

TYR_294   exhibited  a  mixture  of  H-bonds,  hydrophobic 

 

 

interactions, and water bridges, with an interaction fraction 

of 1.2. The protein-ligand contacts graph provides valuable 

insights into the nature and frequency of interactions, 

shedding light on the binding characteristics of L3 with the 

selected amino acids. 

 
DISCUSSION 
 

      The molecular dynamics (MD) simulations presented in 

this study provide valuable insights into the behavior and 

interactions of the protein-ligand complex formed by protein 

5ZMA and ligands L2 and L3 [34]. The analysis of the 

protein-ligand RMSD reveals interesting patterns in the 

stability of the complex over time. The initial stability 

observed for both ligands suggests that the initial binding 

conformation is maintained during the initial simulation 

period. However, subsequent increases in RMSD indicate 

significant conformational changes or potential binding 

events that affect the structural stability of the ligands. The 

zigzag pattern of increasing RMSD followed by periods of 

stabilization suggests dynamic behavior and the potential for 

adaptive structural changes within the protein-ligand 

complex. The protein RMSF analysis provides insights into 

the flexibility of individual residues within the protein. The 

observed fluctuations in RMSF indicate inherent flexibility 

and mobility of the protein residues. Residue indices 55 and 

80, corresponding to ILE-267 and LYS-494, respectively, 

exhibit increased flexibility compared to other residues. 

These regions may serve as potential hotspots for ligand 

binding or allosteric interactions. The ability of these residues 

to undergo significant fluctuations suggests their importance 

in the dynamic behavior of the protein-ligand complex. The 

analysis of protein-ligand contacts reveals the nature and 

frequency of interactions between specific amino acids and 

the ligands. Most amino acids predominantly exhibit water 

bridges and hydrogen bonds as the major interaction types. 

However, two residues, ILE_267 and LYS_494, stand out 

with relatively higher interaction fractions, indicating a 

stronger affinity towards the ligands. These residues may 

play a crucial role in ligand binding and stabilization within 

the protein-ligand complex. Additionally, ALA_495 also 

shows significant involvement in ligand binding. For ligand 

L3, analysis of protein-ligand contact highlights hydrophobic 

interactions as  the  predominant  interaction  type.  Specific  
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amino acids, such as TRP_424 and PHE_282, exhibit high 

interaction fractions, suggesting their importance in the 

binding characteristics of L3. H-bonds and minor water 

bridges are also observed, further contributing to the binding 

interactions between the ligand and selected amino acids. 

Overall, the MD simulations provide valuable insights into 

the stability, flexibility, and molecular interactions within the 

protein-ligand complex. These findings offer a deeper 

understanding of the complex's behavior and provide a 

foundation for further optimization and development of 

potential inhibitors for lung cancer [35]. 

 

ADME-Tox Analysis 
      In our study, we conducted a comprehensive ADME-Tox 

analysis to compare the reference compound, which is a 

known lung cancer inhibitor, with our newly identified 

candidates. Both new molecules and the reference molecule 

revealed similar properties with no significant violations in 

Lipinski, Ghose, Veber, Egan, and Muegge rules [36]. 

Therefore, the new compounds demonstrated lower 

molecular weight and lipophilicity, better solubility, and 

similar synthetic accessibility compared to the reference 

molecule. 

 To compare the ADMET (Absorption, Distribution, 

Metabolism, Excretion, and Toxicity) properties of the 

reference compound 9FX with ligands L2 and L3, we will 

focus on key parameters such as molecular weight (MW), 

LogP, LogS, solubility, and various inhibitory properties. 

Below is a Table 3 summarizing the values for these 

properties: 

Ligands L2 and L3 exhibit several favorable properties 

compared to the reference compound 9FX [37]. Firstly, both 

ligands have slightly higher molecular weights (L2: 352.41 

and L3: 341.36) compared to 9FX (342.35). Generally, 

higher MW is desirable as it enhances the chances of binding 

to the target. Additionally, both ligands possess similar or 

better LogP values (lipophilicity) and LogS values (aqueous 

solubility) compared to 9FX, indicating their potential for 

favorable drug-like properties. Moreover, L2 and L3 exhibit 

improved inhibitory profiles against several cytochrome 

P450 (CYP) enzymes (CYP1A2, CYP2C19, CYP2C9, 

CYP2D6, and CYP3A4) compared to 9FX. This suggests 

that L2 and L3 may have stronger inhibitory effects on these 

enzymes, which can be advantageous  for  drug  metabolism 

 

 

Table 3. Comparison of ADMET Properties: 9FX vs. 

Ligands L2 and L3 

 

Property 9FX L2 L3 

MW 342.35 352.41 341.36 

LogP 3.35 3.34 3.90 

LogS -4.20 -4.59 -4.60 

Solubility (mg ml-1) 0.0215 0.009 0.0085 

CYP1A2 Inhibitor Yes Yes Yes 

CYP2C19 Inhibitor Yes Yes Yes 

CYP2C9 Inhibitor No Yes Yes 

CYP2D6 Inhibitor No Yes Yes 

CYP3A4 Inhibitor Yes Yes Yes 

GI Absorption High High High 

BBB Permeant No No Yes 

Pgp Substrate No Yes Yes 

Lipinski Violations 0 0 0 

Veber Violations 0 0 0 

Synthetic 

Accessibility 
3.12 2.93 3.31 

 

 

and potential drug-drug interaction avoidance. In terms of 

ADMET-related properties, all three compounds 

demonstrate high gastrointestinal (GI) absorption, indicating 

good bioavailability. Notably, L3 possesses BBB 

permeability, suggesting its ability to cross the blood-brain 

barrier, which can be beneficial for targeting central nervous 

system-related diseases. Additionally, ligand L2 is identified 

as a P-glycoprotein (Pgp) substrate, indicating its potential to 

be transported out of cells by this efflux pump. This 

characteristic can be advantageous for drug delivery and 

distribution in certain scenarios. Both ligands L2 and L3 

exhibit a comparable number of Lipinski and Veber 

violations to 9FX, indicating that they are within the 

acceptable range for drug-likeness and oral bioavailability. 

Considering these findings, ligands L2 and L3 present several 

advantages over the reference compound 9FX, such as 

improved inhibitory profiles, comparable or better ADMET 

properties, and favorable MW ranges. These factors make 

ligands L2 and L3 promising candidates for further  
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exploration and potential selection as lung cancer inhibitors 

[38]. 

 

CONCLUSION 
 

      The study aimed to discover a potential inhibitor against 

lung cancer using computational approaches, encompassing 

data collection, compound and protein preparation, virtual 

screening, as well as molecular docking and dynamics 

simulations. The identified potential inhibitors demonstrate 

robust binding affinity, favorable interactions, and promising 

drug-like properties, positioning them as candidates for 

further investigation and potential development as lung 

cancer therapeutics. The findings offer valuable insights into 

the application of computational approaches in lung cancer 

drug discovery. They not only contribute to the ongoing 

efforts in the field but also open avenues for future research. 

However, the path ahead involves critical steps for translation 

and practical implementation. Moving forward, it is pivotal 

to proceed with experimental validation, optimizing the 

identified compounds, and further developing these novel 

therapeutic agents. The advancement of these compounds 

into clinical trials will be essential for assessing their 

efficacy, safety, and dosage in real-world settings. Moreover, 

additional computational studies, structural modifications, 

and toxicological assessments are warranted to propel these 

findings toward tangible clinical applications. These findings 

serve as a foundation for future investigations and drug 

development, marking a significant step forward in the fight 

against lung cancer. The integration of computational 

techniques with experimental validation not only holds 

promise for identifying targeted and effective treatments but 

also demonstrates the potential to improve patient outcomes 

in the battle against this devastating disease. In conclusion, 

this comprehensive study provides a strong basis for the 

future development of potential lung cancer inhibitors. The 

identified compounds, L2 and L3, demonstrate substantial 

potential, yet their realization into effective therapeutic 

agents necessitates further exploration, collaboration, and 

rigorous evaluation. This research underscores the 

significance of continued exploration in lung cancer 

therapeutics and offers a pathway toward more effective 

treatments and improved patient care. 
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