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      The ALK tyrosine kinase receptor is a promising target in lung cancer. To estimate ALK-TK inhibitory activity, we used QSAR modeling 

on heterocyclic compounds with varied structures and a large dataset of 1329 chemicals experimentally reported for anticancer activity 

against ALK-TK. The developed QSAR model meets various validation criteria, such as R2 = 0.79, Q2
LOO = 0.78, Q2

LMO = 0.78, R2
ex = 0.77, 

and CCCex = 0.87. In addition, we have used QSAR-based virtual screening to find 12 FDA compounds as in-silico hits, some of which could 

be used in clinical settings as ALK-TK inhibitors with a docking score ranging from -7.10 to -10.57 kcal mol-1. For both wild-type and mutant 

ALK-TK, QSAR-based virtual screening predicted a PIC50 of 9.18 M for the new compound ZINC000150338819 with a docking score of             

-10.57 kcal mol-1 (RMSD 1.54 Å). MD simulation and MMGBSA investigations confirm that the ZINC000150338819-ALK TK complex is 

stable for 200 ns for both wild-type and mutant ALK TK. To confirm the in-silico findings, the MTT assay reveals that Ledipasvir showed 

more inhibition as compared to ceritinib. This study suggests that the hit compound ZINC000150338819 may be a repurposed ALK TK 

inhibitor in drug discovery. 
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INTRODUCTION 
 

      In 1991, researchers discovered a membrane-bound 

tyrosine kinase receptor called anaplastic lymphoma kinase 

(ALK). Abnormal forms of ALK, such as fusion proteins, 

point mutations that activate ALK, and gene amplification, 

are found in cancer. Abnormal ALK expression is linked to 

the development of many types of cancer [1]. In 1997, many 

notable studies were conducted on ALK in its wild forms. 

Since then, the receptor tyrosine kinase has been the primary 

focus of research [2,3]. 

      The human ALK gene is located in the chromosomal 

region 2p23.2p23.1. This 26-exon gene encodes the ALK 

protein, which is 1620 amino acids long. The full-length 

ALK protein has a transmembrane region, a ligand-binding 

region, and an intracellular tyrosine kinase region consisting  
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of 561 amino acids [2,3]. The 3-tyrosine motif (Tyr1278, 

Tyr1282, and Tyr1283), where autophosphorylation for 

kinase activity occurs, is also found in other members of the 

same family of kinases (See Fig. 1).  

      The tyrosine kinase enzyme ALK (ATP) converts a 

tyrosine residue on a substrate protein to adenosine 

triphosphate. It catalyzes the phosphorylation of protein 

tyrosine residues. Several enzymes, including kinases and 

phosphatases, carry out the crucial phosphorylation and 

dephosphorylation of proteins in various biological 

processes. The amino-terminal part of nucleophosmin (NPM) 

and an ALK kinase domain are both found in the 

NPMALK/p80 proteins. The ALK kinase domain can form 

functional dimers more efficiently. The NPMALK fusion 

protein is the first known ALK fusion protein that causes 

cancer. The full-length ALK receptor tyrosine kinase (RTK) 

was discovered several years ago. This protein consists of 

transmembrane   regions,   an  extracellular    ligand-binding 
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Fig. 1. Structure of ALK, showing a polypeptide of 1620 

amino acids. The full-length form of ALK resembles other 

receptor tyrosine kinases. Kinase activity is regulated by a 3-

tyrosine motif (Tyr1278, Tyr1282, and Tyr1283), which is 

located in an intracellular tyrosine kinase domain.  

 

 

region, and an intracellular tyrosine kinase domain [2,3,4]. 

      In mice and humans, the ALK locus encodes a receptor 

tyrosine kinase (RTK) with ligand-binding, transmembrane, 

and intracellular domains. ALK and LTK are similar enough 

to form a subfamily of the insulin receptor superfamily. 

Unlike other RTKs, ALK and LTK include glycine-rich 

extracellular domains. ALK comprises LDLa and MAM 

domains [5]. Mammals also activate ALK using Pleiotrophin 

(PTN) and midkine (MK) [6,7,8,9,10]. Inhibiting the ALK 

kinase  of  interest  is  necessary  to  target  ALK  in  various 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cancers. This is because oncogenic stimulation of ALK 

kinase activity is required for the formation of ALK fusion 

proteins and the acquisition of ALK’s distinctive factor 

mutations [11,12]. Several research studies have revealed 

that TKIs' ability to inhibit ALK kinase activity has a 

substantial anticancer effect [13-20]. Moreover, numerous 

potent and selective ALK-TKIs have been designed to inhibit 

fusion proteins and activate ALK variants [21-31]. Many 

ALK TKIs are available for cancer therapy in different 

regions. The FDA has approved several ALK inhibitors for 

cancer therapy, including ceritinib, brigatinib, crizotinib, 

alectinib, TPX-0131, GSK1838705, CEP28122, AP26113, 

and X-396 (See Fig. 2). 

      Targeted therapy using the epidermal growth factor 

receptor (EGFR) has been discovered as a treatment for 

NSCLC patients with ALK activation mutations. However, 

most patients who receive targeted treatment relapse due to 

genetic changes that confer resistance [21,32]. PF02341066 

(crizotinib) is an aminopyridine ALK inhibitor that is now 

being tested in phase III clinical studies [33]. 

      Most QSAR studies on ALK-TK inhibitors have limited 

datasets, poor prediction, no mechanistic explanation, or a 

combination of these flaws, which limits their utility. In this 

study, QSAR analysis was performed on a large and diverse 

experimentally reported dataset of ALK-TK inhibitors in 

compliance with OECD  regulations.  To locate  compounds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Some of the ALK tyrosine kinase discovered to date and available in clinical practice. 
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with required characteristics in huge libraries, QSAR-based 

virtual screening (VS) was studied. The compounds were 

then experimentally validated. VS, like other computational 

methods, speeds up the procedure, narrows the candidate 

pool, and illuminates the selection process [34]. 

      Repurposing "old" drugs for rare and multiple diseases 

may minimize research costs and development times [35]. In 

the present work, we used a QSAR-based virtual screening 

approach combined with drug repositioning to find a unique 

lead drug candidate that might effectively inhibit ALK 

tyrosine kinase receptors. The interactions between the newly 

discovered FDA drugs were investigated using molecular 

docking, MD modeling, and MMGBSA studies. To 

corroborate the results obtained virtually, we conducted an in 

vitro MTT experiment using the A549 lung cancer cell line. 

 
EXPERIMENTAL 
 

QSAR Methodology 
      The current study adheres to the conventional technique 

advised by the OECD and other scholars for doing QSAR 

analysis [36-38]. All tools were used with their default 

values; however, certain settings were altered, and these are 

detailed in the documentation, in order to generate a robust 

QSAR model with an equilibrium of predictive capacity and 

mechanistic understanding. 

      Step 1: Data collection and curation. To start, the 

Binding DB (https://www.bindingdb.org/bind/index.jsp; last 

accessed: 12/24/2021) was used to get a large dataset with 

1806 IC50 values for experimentally proven ALK-TK 

inhibitors. Data quality, and suitable curation before further 

processing have a significant impact on QSAR analysis 

[37,39-41]. After that, we filtered the data [42], which 

included eliminating duplicates, organometallic compounds, 

salts, molecules with ambiguous IC50 values, and so on. This 

resulted in a reduction of the dataset's molecules from 1807 

to 1328. In spite of the reduced size of the dataset, it still 

included molecules with experimental IC50 (nM) values 

between 0.3 and 83,000 nM and the occurrence of different 

scaffolds such as heterocyclic rings, positional isomers, 

stereoisomers, etc., all of which widened the chemical space 

and increased the model's applicability. Table 1 (See                  

Table 1 in the Supplementary Materials) contains the 

SMILES  (Simplified  Molecular  Input  Line Entry System) 

 

 

nomenclature for all of the compounds used in this 

investigation, together with their experimental IC50 and pIC50 

(=log10IC50). To further illustrate the structural variety of the 

molecules in the collection, some illustrative examples have 

been provided in Fig. 3.  

      Table 1 shows a few representative values for IC50 (nM) 

and pIC50 (M) in the SMILES format, along with some 

examples of the most and least active compounds. 

      Step 2. Second, we utilized the default settings for 

OpenBabel 2.4 [43] and MOPAC 2012 (openmopac.net, 

obtained on March 5, 2022) to generate SMILES notations 

for the optimum 3D structures of the compounds (semi-

empirical PM3 technique). 

      Step 3. If enough molecular descriptors are generated and 

subsequently pruned to limit the chance of overfitting from 

redundant noisy descriptors, then a QSAR model may strike 

a satisfactory balance between mechanistic interpretation and 

predictive ability [44]. Then, molecular descriptors were 

generated from 1D to 3D for every molecule. For this 

objective, we used PyDescriptor [45], which can 

calculate over 40,000 molecular descriptors for a given 

molecule. To reduce the number of molecular descriptors in 

the descriptor pool, we used QSARINS 2.2.4 to eliminate 

duplicates and variables with strong correlation (|R| > 0.95 or 

> 98%) [46]. This resulted in a reduction from 40,000 to 

2,376 but still covered a broad spectrum of molecular 

descriptors. 

 
Subjective Feature Selection (SFS) Involves 
Separating the Dataset into a Training Set and an 
External Set 
      Splitting the dataset into a training set and an external set 

(also known as a prediction set or test set) is essential for 

developing and validating a reliable QSAR model [37,39-

41]. In order to exclude any possible bias, we divided the 

dataset into a training set of 1062 molecules (80%) and an 

external collection of 266 molecules (20%) for this study. 

The only purpose served by the external set was model 

validation (predictive QSAR), whereas the molecular 

descriptors were selected from the training set to determine 

how many parameters were desired. QSARINS 2.2.4 was 

used to develop the model through multi-linear regression 

(MLR) and the Genetic Algorithm (GA). With a fitness 

function  of  Q2
LOO  and 10,000  iterations.  Determining  the 
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right number of molecular descriptors to use in a model's 

creation is an important step in quantitative structure-activity 

relationship (QSAR) modeling. Until the value of Q2
LOO         

rose beyond a certain threshold, the  heuristic  search  had to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

construct a large number of models, beginning with a 

univariate model and progressing to a multivariate model as 

additional molecular descriptors were included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. The top five most active (A) and least active (B) five molecules in the provided dataset in terms of activity. 

 

 

Table 1. SMILES Notation, IC50 (nM), and pIC50 (M) Values for the Five most and Least Active Compounds in the Selected 

Data Set 

 

Id SMILES  IC50 in nm PIC50 

25 CCc1cc2C(=O)c3c([nH]c4cc(ccc34)C#N)C(C)(C)c2cc1N1CCC(CC1)N1CCC(O)CC1 0.3 9.523 

33 C[C@H]1Oc2nc(cnc2N)-c2cc(ccc2CN(C)C(=O)c2ccc(F)cc12)S(C)(=O)=O 0.34 9.469 

35 COc1cc(ccc1Nc1ncc(Cl)c(Nc2ccccc2P(C)(C)=O)n1)N1CCC(O)CC1 0.36 9.444 

36 COc1cc(ccc1Nc1ncc(Cl)c(Nc2ccccc2P(C)(C)=O)n1)N1CCC(CC1)N1CCN(C)CC1 0.37 9.432 

37 CCN1CCCc2cc(Nc3ncc(Cl)c(Nc4ccccc4S(=O)(=O)C(C)C)n3)c(OC)cc2C1 0.38 9.42 

1791 CN1CCN(CC1)c1ccc(Nc2ncc3ccc(-c4ccccc4C(N)=O)n3n2)cc1 726 6.139 

1793 COc1ccccc1C#Cc1ccnc2[nH]c3ccc(cc3c12)-c1ccc(cc1)N1CCN(C)CC1 750 6.125 

1800 CN1CCN(Cc2ccc(cc2)C(=O)Nc2nc(cs2)-c2ccc(C)c(c2)C#Cc2ccc(C)cc2)CC1 83000 4.081 

1803 CC1(C)c2[nH]c3cc(ccc3c2C(=O)c2ccc(OC[C@H](O)CO)cc12)-c1ccn[nH]1 770 6.114 

1805 CC(C)S(=O)(=O)c1ccccc1Nc1nc(Nc2nc3CCN(C)CCc3s2)ncc1Cl 773 6.112 

 

594 



 

 

 

In-silico QSAR Modeling for Identification of Novel Anticancer/Phys. Chem. Res., Vol. 12, No. 3, 591-620, September 2024. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 27 is a two-dimensional graph showing the 

correlation between the Q2
LOO values and the number of 

chemical descriptors employed by the models. Adding more 

molecular descriptors did not increase the model's statistical 

performance; hence, this threshold was used to determine the 

ideal number of variables to include in the model. The 

investigation established critical values for six independent 

variables [47,48] (See Fig. 4). This meant that the QSAR 

models with more than six descriptors had to be rejected. 

 
Constructing a Valid Regression Model and its 
Validation 
      Several validation methods, such as cross-inter 

validation, external validation, Y-randomization analysis, 

and the applicability domain (William's plot), can be used to 

test how accurate and reliable a QSAR model is. A well-

validated QSAR model is very helpful for virtual screening, 

lead/hit optimization, decision-making, and other activities. 

Several types of validation-cross-inter, external, Y-

randomization, and applicability domain (William's plot)-can 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

be used to approximate the robustness and wide application 

of a QSAR model [37,49-52]. 

      The following are the typical criteria for assessing QSAR 

models, together with their corresponding threshold values 

for validation parameters [47,48]. There have been several 

successful model generation efforts using GA-MLR. The 

best possible model was selected using the following 

stringent parameters and criteria: R2
tr ≥ 0.6, Q2

loo ≥ 0.5, 

Q2
LMO ≥ 0.6, R2 > Q2, R2ex ≥ 0.6, RMSEtr < RMSEcv, K  ≥ 

0.05, CCC  ≥ 0.80, Q2-Fn  ≥ 0.60, r2m  ≥ 0.5, (1-r2/ro2) < 0.1, 

0.9 ≤  k  ≤  1.1, or (1-r2/r’o2) < 0.1, 0.9 ≤ k’ ≤ 1.1,| ro2-r’o2| 

< 0.3, RMSEex, MAEex, R2ex, Q2
F1, Q2

F2, Q2
F3, and low 

R2
Yscr, RMSE and MAE. 

      Validation of quantitative structure-activity relationship 

(QSAR) models entails establishing the model's 

applicability. We used a Williams plot to determine the extent 

to which the QSAR model was reliable. (Table 2 in the 

supplemental materials lists the computed descriptors used to 

create the QSAR model.) Table 3 of the supplementary 

materials   provides   the   formulas   for  determining  these 

 
Fig. 4. Graph for the number of descriptors vs. leave-one-out Coefficient. Q2

LOO for optimal descriptor count. 
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statistical features. 

 

QSAR-Based Virtual Screening for Drug 
Repositioning (Repurposing) 
      Due to the rising need for novel anticancer treatments, 

drug repurposing has fascinated the cancer research 

community. Even though there are many ways to treat cancer, 

such as chemotherapy and targeted therapies, cancer is 

defined by its inability to respond to current medicines and 

drugs. Because of this, studying potential novel cancer 

treatments is a thriving field of study [35,53,54]. Nowadays, 

drug repositioning is an emerging area of study; therefore, we 

utilized this information to conduct a QSAR-based virtual 

screening using the zinc database and its 1615 FDA 

compounds. Since then, QSAR-based VS has used 1615 

FDA substances. Before doing molecular descriptor 

calculations, the 3D structures of molecules were constructed 

in the same way as a modeling set. The ALK-TK inhibitory 

action of 1615 FDA-approved drugs was predicted using a 

completely validated six-parameter quantitative structure-

activity relationship (QSAR) model, which was derived 

using estimated chemical descriptors. The chemical details 

and predicted IC50 values for the zinc FDA 1615 compounds 

are included in Table 4 of the supplemental materials. 

 
Molecular Docking Analysis 
      The ALK TK wild type (pdb-4cmu) and mutant (pdb-

4clj) Protein Data Bank (pdb) data were obtained from the 

protein data bank [55]. The pdb:4cmu and 4clj were chosen 

on the basis of X-ray resolution and completion of amino acid 

sequences. Ramachandran's plot was used to determine the 

protein's health before running docking simulations. The 

protein, after optimization, passes muster for docking studies. 

Both PDB files had their native ligands removed before 

docking analysis could begin. To facilitate comparison 

between the wild-type (4cmj) and mutant (4clj) strains, all 12 

hit molecules from the QSAR-based virtual screening were 

docked into the active sites of both. For convenience, we've 

included the docking position of Ledipasvir, the most active 

molecule. 

      Molecular docking analysis was performed in NRGSuite 

software package [56]. This is an open-access tool that is 

available at no cost as a plugin for the PyMOL software 

(www.pymol.org as of  March 9, 2022).  FlexAID  can  help  

 

 

you find cavities on protein surfaces to ensure that it can be 

utilized in docking simulation targets [57]. Covalent docking, 

conformational search using a genetic algorithm, and the 

mobility of ligands and side chains are all modeled. For 

optimal performance in this study, NRGsuite was run with 

the following flexible-rigid docking with default parameters: 

Input Method for Boundary Sites: HET groups contain water 

molecules; have a van der Waals permeability of 0.1; have 

gone through 1000 generations; use the share fitness metric; 

reproduce using the population explosion model; have five 

TOP complexes; have a cylindrical form (diameter: 19); have 

a three-dimensional grid spacing of 0.367; have no side-chain 

mobility; be ligand-adaptable; not have a ligand posture for 

comparison; have no constraints; and so on. For both the 

wild-type and mutant strains, the accuracy of molecular 

docking was tested using two molecules: PF-06463922 and 

(10R) -7-amino-12-fluoro-1, 3, 10, 16-tetramethyl-16, 17-

dihydro-1H-8, 4-(metheno) pyrazole (4, 3-) (2, 5, 11). ((10R) 

-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16-

tetrahydro-2H-8) 4-(metheno) pyrazole (4, 3-h) (2,5,11) is a 

well-characterized inhibitor of ALK TK that was used to 

verify the docking method. 

  

Molecular Dynamics (MD) Simulations 
      Molecular dynamics and simulation (MDS) methods 

were used to look into how stable and convergent the 

interaction between ledipasvir and ALK TK was. This study 

examined both wild (pdb-4cmu) and mutant (pdb-4clj) 

strains for their stability. The system builder was used to 

construct intricate systems for the strains of Ledipasvir-wild, 

Ledipasvir-mutant, Ceritinib-wild, and Ceritinib-mutant. 

This action was undertaken in order to facilitate the execution 

of simulations. The system used the OPLS-2005 force field 

and included an explicit solvent model using SPC water 

molecules [58,59]. The baseline parameters for the explicit 

SPC water model's orthorhombic box measuring 7.0 x 7.0 x 

7.0 meters were established using Desmond 2018-4 [60]. The 

neutralization of both wild-type and mutant ALK-TK 

complexes was achieved by introducing NaCl salt at a 

concentration of 0.15 M Na+ ions. In the Desmond system 

builder panel, the neutralise option has been selected to 

introduce a predetermined quantity of counterions. In the 

molecular dynamics simulation approach, 18 sodium (NA) 

ions and 15 chloride (Cl) ions were included. After using the  
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ASL module to choose certain residues of the ligand and 

protein molecules, the Desmond default relaxation technique 

was employed to improve the performance of the resulting 

systems. To learn more about each complex, we conducted 

molecular dynamics (MD) simulations. In the previous 

production run, we kept the temperature and pressure (NPT) 

constant and ran a molecular dynamics simulation (MDS) for 

200 ns. The Nosé-Hoover chain coupling method was used 

to create the NPT ensemble, and the final simulation was run 

at 300 K with a relaxation period of 1 ps throughout the whole 

dynamics [60,61]. With a relaxation time of just 2 

picoseconds [62], the pressure was controlled using a barostat 

based on the Martyna Tuckerman-Klein chain coupling 

system. The Desmond simulation used the isotropic Martyna-

Tobias-Klein barostat and the Nose-Hoover thermostat to 

regulate the pressure at 1 atmosphere and the temperature at 

300 Kelvin.  The NPT ensemble was used in all runs, with a 

temperature of 300 K and a pressure of 1 bar. We successfully 

estimated the bonding interactions by utilizing a time step of 

2 femtoseconds and the RESPA integrator. Using the particle 

mesh Ewald method, and keeping the radius for Coulomb 

interactions at 9 [63], we were able to calculate the long-

range electrostatic interactions between the particles. This 

investigation describes the remaining possible setups. After 

finishing the last simulation run, the simulated trajectories of 

the wild-type and mutant Ledipasvir strains were analysed. 

Root-mean-square deviation (RMSD), root-mean-square 

fluctuation (RMSF), and hydrogen-bond formation were the 

primary areas of study in this examination. Binding energies 

for the complexes were estimated using the MM-GBSA 

technique, which was applied to 200 individual 1 ns 

trajectories. Standard deviations and mean binding energies 

were calculated from the obtained data. 

 
Molecular Mechanics: Generalised Borne Surface 
Area 
      Docked complexes of ledipasvir and ceritinib were 

analyzed to determine their binding free energy (Gbind) with 

the help of the MM-GBSA module. During molecular 

dynamics (MD) simulations, the ALK complex was attached 

to both natural (4cmu) and mutant (4clj) strains, allowing for 

this estimate to be made. The New York-based Schrodinger 

Suite, LLC, version 2023-24, was used to run the simulations. 

Binding free energy was determined using a rotamer  search  

 

 

and calculated with the OPLS 2005 force field and the VSGB 

solvent model [64]. After an MD experiment was completed, 

a time window of 10 ns was used to choose the frames of the 

trajectories. By using Eq. (1), the comprehensive free energy 

of binding was successfully determined. 

 

      ΔGbind = Gcomplex – (Gprotein + Gligand)                     (1) 

 

Where,  

 

ΔGbind = binding free energy,  

Gcomplex = free energy of the complex,  

Gprotein = free energy of the target protein,  

and Gligand = free energy of the ligand. 

 

The trajectories of the MMGBSA results were analyzed to 

learn more about the structural changes that occurred after the 

dynamics were applied. 

 
In-Vitro Evaluation of Anticancer Activity by MTT 
Assay 
      The A549 lung cancer cell line, at passage 68, was 

purchased from NCCS, Pune, India. F-12K medium, 

antibiotic-antimycotic solution, HEPES solution, and 10% 

fetal bovine serum were used to cultivate the cells after they 

were frozen. The experiment used the 3(4,5-dimethyl-

thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay 

to assess mitochondrial function. This assay relies on the 

reducing properties of MTT, which lead to the formation of 

insoluble formazan crystals specifically inside viable 

mitochondria. In summary, 1x104 A549 cells were seeded 

into each well of a 96-well plate, and the plate was then 

incubated for 24 h at 37 °C in 5% CO2. Following removal of 

the medium, the cells were treated with Ceritinib (5 M), 

Posaconazole (10 M), Ledipasvir (20 M), and Ledipasvir               

(40 M) for 24 h in triplicate. The chemical ceritinib was used 

as a standard. Each well was given a media volume of 300 l. 

After 24 h of treatment, 25 l of MTT solution (5 mg ml-1) was 

added to each well, and the cells were incubated for 4 h at                      

37 °C in a 5% CO2 atmosphere. Following the dissolution of 

the formazan crystals in a volume of 100 l of dimethyl 

sulfoxide (DMSO), the absorbance was then determined at a 

wavelength of 570 nanometers using an Epoch Microplate 

Spectrophotometer manufactured by Biotek Instrument. The  
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IC50 values were calculated using GraphPad Prism (version 

7) software. Examining a nonlinear plot of the percentage of 

cell inhibition against the logarithm of concentration enabled 

this. The calculation of cell growth inhibition percentage was 

performed using the below formula: 

 

      %Cell Viability = (AT/AU) × 100 

 

Where; AT = Absorbance of Treated Cells (Drug) 

AU = Absorbance of Untreated Cells, %Cell Inhibition =                      

100 - %Cell Viability 

 
RESULTS AND DISCUSSION 
 

      In this study, we employed molecular docking and 

quantitative structure-activity relationship analysis to 

determine structural elements essential for ALK-TK 

inhibition. The QSAR paradigm links structural features to 

simple chemical descriptors. The six-parametric GA-MLR 

model's unambiguous molecular descriptors and structural 

interpretation make it an excellent external predictor. 

Although it is possible to explain the effect of a specific 

descriptor by looking at the IC50 values of the molecules in 

the dataset, it is important to note that the combined or 

inverse effect of unknown factors or other molecular 

descriptors could have a significant impact on a molecule's 

IC50 value. 

 
QSAR Model   
PIC50 = 5.577 (± 0.087) + 1.21 (± 0.102) * aroC_sumpc + 

0.086 (± 0.006) * ringC_plaN_6B + 0.221 (± 0.029) * 

fnotringNsp3C4B + -0.269 (± 0.027) * faroNC8B + 1.059 (± 

0.103) * fdonnotringN5B + -0.595 (± 0.061) * 

fnotringNringN4B+ 

 

R2:0.7909, R2adj:0.7897, R2-R2
adj:0.0012, LOF:0.2544, Kxx: 

0.3058, Delta K:0.0661, RMSEtr: 0.4987, MAEtr: 0.4215, 

RSStr: 264.3315, CCCtr: 0.8832, s: 0.5003, F: 665.6663, 

Q2
loo: 0.7882, R2-Q2

loo: 0.0027, RMSEcv: 0.5019, MAEcv: 

0.4242, PRESScv: 267.7734, CCCcv: 0.8817, Q2
LMO: 0.7885 

,R2
Yscr:0.0056, Q2

Yscr:-0.0076, RMSEAVYscr:1.0874, 

RMSEext:0.5285, MAEext:0.4460, PRESSext:74.0260, 

R2
ext:0.7710, Q2-F1:0.7708, Q2-F2:0.7690, Q2-F3:0.7651, 

CCCext:0.8739,         r2m aver.:0.6744,        r2m delta:0.1472, 

 

 

R2: 0.7882, R'2o: 0.7334, k': 0.9956, Clos': 0.0695, r'2m: 

0.6038.  

Pred(x) vs. Exp(y): R2: 0.7882, R2o: 0.7882, k: 1.0000, Clos: 

0.0000, r2m: 0.7869, Exp(x) vs. Pred(y): R2: 0.7710, R'2o: 

0.7223, k': 0.9998, Clos': 0.0632, r'2m: 0.6008, R2: 0.7710, 

R2o: 0.7701, k: 0.9951, Clos: 0.0012, r2m: 0.7480.  

      Figure 5 depicts the many plots used to evaluate the 

model's applicability, including the Williams plot (see                   

Fig 5b), the Insubria plot (see Fig. 5c), and a comparison of 

the experimental and anticipated PIC50. For several statistical 

characteristics, the generated QSAR model meets the 

threshold values that are suggested (formulas and statistical 

parameter definitions are in the supplemental material). A 

molecule's IC50 value may be affected by unknown variables 

or other chemical characteristics. 

      R2
tr (Coefficient of determination) values are nearing 1, 

indicating that the model incorporates a sufficient number of 

variables without resorting to over-fitting, R2
adj. (Adjusted 

coefficient of determination), LOF (Lack of fit), and R2
cv 

(Q2
loo) (Cross-validated coefficient of determination for 

leave-one-out). Acceptable model internal validation is 

shown by a high value of Q2
LMO (the cross-validated 

coefficient of determination for leave-many-out). R2
tr, R2

adj, 

LOF, and R2
cv (Q2

loo) (Cross-validated coefficient of 

determination for leave-one-out) are all close, demonstrating 

that the model contains the appropriate number of variables 

and does not over-fit. A high Q2
LMO (the cross-validated 

coefficient of determination for leave-many-out) indicates 

that the model has satisfactory internal validation. 

      In order to avoid overfitting, the current QSAR model 

uses an inter-correlation coefficient cutoff of 0.95. Table 2 

also displays the feature-feature correlation matrix. As can be 

observed in Table 1, the existing QSAR model does not 

exhibit any link between the various descriptors. 

 

QSAR Mechanistic Interpretation  
      AroC_sumpc shows how important the sum of partially 

charged aromatic fragment carbon atoms is as one of the 

variables that are positively correlated in the QSAR model 

that was built. These descriptions emphasize the total and 

partial charges associated with aromatic and fragrant carbon 

atoms. The positive coefficient for this descriptor indicates 

that a higher activity profile correlates with a higher 

aroC_sumpc value. Because the total of the partial charges on 
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Fig. 5. QSAR model development and accompanying graphs (a) A scatter plot contrasting the expected and experimental PIC50 

values (b) a portrayal of a Williams plot to assess the model's applicability domain; and (c) a presentation of an Insubria plot. 

 

 

Table 2. Display of the Descriptor Correlation Matrix Used in the Construction of the QSAR Model 

 

  aroC_sumpc ringC_plaN_6B fnotringNsp3C4B faroNC8B fdonnotringN5B fnotringNringN4B 

aroC_sumpc 1           

ringC_plaN_6B 0.2106 1         

fnotringNsp3C4B 0.6601 0.2798 1       

faroNC8B 0.3668 0.4161 0.3341 1     

fdonnotringN5B -0.3209 0.1311 -0.3352 -0.3236 1   

fnotringNringN4B 0.1114 0.0567 0.1066 0.027 -0.1131 1 
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aromatic carbon atoms is usually positive, this property raises 

the pIC50 value. This may be determined by evaluating the 

subsequent pair of molecules: 502 (502, IC50 = 4.67 nM, 

aroC_sumpc = 0.65, ringCplus_sumpc = 0.97) and 1030 

(1030, IC50 = 19.05 nM, aroC_sumpc = 0.49, 

ringCplus_sumpc = 0.85) (See Fig. 6). Further evidence from 

a study comparing the following two molecules: 1060                        

(IC50 = 54.95 nM, aroC_sumpc = 0.902, ringCplus_sumpc = 

1.215) with 1312 (pIC50 = 295.1 nM, aroC_sumpc = 0.524, 

ringCplus_sumpc = 0.850), As a corollary, it is interesting to 

note that 54 of the most active molecules (IC50 in the range 

of 1 to 0.372 nM) have higher positive values for 

aroC_sumpc, with the exception of molecules 37, 76, 86, and 

90, which have aroC_sumpc values in the negative range; 

conversely, more than 200 of the least active molecules 

(pIC50 in the range of 4 to 6) have aroC_sumpc values in the 

negative range with low pIC50. This data supports the 

observation that increasing the amount of partial positive 

charges on the aromatic or positively charged ring carbon 

increases lipophilicity, which promotes hydrophobic 

interactions, and thus improves ALK-TK inhibitory efficacy. 

In addition, molecule 502 is composed of a phenyl ring as a 

substituent at the 5th position of the pyridine ring, but in 

molecule 1030, it has been replaced by another pyridine ring. 

This result suggests that the difference in ALK-TK inhibitory 

activity between molecule 502 (ringCplus_sumpc = 0.97) 

and 1030 (ringCplus_sumpc = 0.85) may be explained by the 

absence of a phenyl ring in molecule 502. 

      Moreover, the phenyl ring contains more positively 

charged carbon atoms than the pyridine ring. Therefore, it can 

be concluded that aromatic or ring carbon atoms are essential 

in determining ALK-TK inhibitory activity. The molecular 

descriptor aroC_sumpc also highlights this. Also, by 

replacing  aroC_sumpc  with  ringCplus_sumpc  (the sum of 

  

 

 
Fig. 6. The molecular descriptor aroC_sumpc, is shown 

exclusively for molecules 502 and 1030. 

 

 

partial charges on positively charged ring carbon atoms), a 

QSAR model with better statistical overall performance was 

made. The molecular descriptor ringCplus_sumpc has a more 

substantial relationship (R: 0.82) with the pIC50. As a result, 

keeping a positively charged carbon atom improves ALK and 

TK inhibitory activity. According to prior research, 

positively charged ring carbon atoms have a higher inhibitory 

impact on ALK-TK than aromatic carbon atoms. As a result, 

including positively charged ring carbon atoms that promote 

hydrophobic interaction with ALK TK is one of the strategies 

to modify lead compounds in the future. 

      RingC_plaN_6B showed that ring carbon and planar 

nitrogen are important for TK ALK to work as an inhibitor. 

It indicates the presence of ring carbons in the six bonds of 

planar nitrogen atoms. When the value of the positive factor 

for this descriptor in the QSAR model goes up, the inhibitory 

effect of TK-ALK gets much better. One way to show this is 

by contrasting the molecule 1065 (1065, IC50 = 21.38 nM, 

ringC_plaN_6B = 20, C_plaN_5B = 26, aroC_plaN_6B = 16) 

with the molecule 1778 (1778, IC50 = 69183 nM, 

ringC_plaN_6B = 16, C_plaN_5B = 16, aroC_plaN_6B = 12) 

(See Fig. 7). As a result, the value of the ringC_plaN_6B was 

found in the range of 16 to 25 in the 459 most active (IC50 in 

the range of 0.398 to 10 nM) molecules, while the least active 

molecules had a value of zero for the ringC_plaN_6B and the 

remaining least active molecules had a value in the range of 

10 to 15 for the ringC_plaN_6B. This data emphasizes the 

hypothesis that increasing the number of carbon and nitrogen 

in a combination like this boosts the inhibitory activity of 

ALK TK. 

      Interestingly, Weisheng Huang and his colleagues also 

reported making brigatinib (AP26113), a powerful inhibitor 

of anaplastic lymphoma kinase that works when taken by 

mouth. Their research detailed how the same basic (amine) 

side chain can alter ALK activity, particularly cellular 

potency. The molecular descriptor ringC_plaN_6B in the 

QSAR model further highlighted the relevance of the basic 

amine nitrogen side chain. In addition to proving the major 

side chain's significance, the C_plaN_6B descriptor ring also 

pinpointed the basic (planer) nitrogen that is necessary to 

boost cellular potency and ALK-TK inhibitory action65. After 

that, the molecular descriptor ring C_plaN_6B is changed to 

aroC_plaN_6B, which means that there is an aromatic carbon 

atom inside the 6-bond ring of the planar nitrogen atom. This  
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Fig. 7. For molecules 1065 and 1778, the molecular 

descriptor ringC_plaN_6B is shown. 

 

 

slightly improves the statistical performance of the existing 

QSAR model (R = 0.81). 

      Conversely, swapping out the chemical descriptor ring 

C_plaN_6B for C_plaN_5B (the presence of a carbon atom 

within the 5-bond ring of the planar nitrogen atom) 

significantly boosts the statistical power (R = 0. 94) of the 

initially created QSAR model. 

      This observation shows that aromatic or ring carbons are 

essential for ALK-TK inhibition. Still, adding a single carbon 

atom at or near the five bonds of the planar nitrogen atom 

increased the TK ALK inhibitory activity, as shown by a 

statistical correlation with the descriptor C_plaN_5B. This 

finding also shows that there should be five bonds between 

the carbon and the planar nitrogen atom for the best TK-ALK 

inhibitory activity. This observation is supported by taking a 

peek at the crystal structure of human anaphylactic 

lymphoma kinase in complex with 3-(R)-1-(5-fluoro-2(2-

H1,2,3-triazol-2-yl) ethoxy) and 5-methyl-1-H-pyrazol4yl) 

pyridine-2-amine (See Fig. 8). 

      The planar nitrogen atoms responsible for ring 

C_plaN_6B have been marked in red, while the carbon atom 

at or within 6 bonds is shown with blue dotted circles.                    

Figure 3 shows that all of the ring’s A, B, C, and D in the pdb 

(4ccb) ligand had hydrophobic interactions (pi-sigma, alkyl, 

pi-alkyl) with the following residues: Val1130, Ala1148, 

Leu1122, Leu1256, Leu1198, etc., while the terminal NH2 

acts as a hydrogen bond donor and forms a normal hydrogen 

bond with the Glu1197 residue. So, this aromatic 

combination of carbon and nitrogen is good for improving 

polar  and   hydrophobic   interactions   with   the   ALK-TK 

 

 

 
Fig. 8. The ringC_plaN_6B molecular 

descriptor representation in the co-crystallized ligand (pdb id 

= 4ccb) is shown. (Planer nitrogens are highlighted by red 

color while ring carbon atoms by blue bold dots). 

 

 

receptor. Thus, our QSAR investigation revealed essential 

structural features that are visible in the X-ray-resolved 

crystal structure of the same target ALK-TK inhibitor 

 

FnotringNsp3C4B 
      The descriptor fnotringNsp3C4B is used to show how 

often Sp3 hybridized carbon atoms are found within 4 bonds 

of acyclic or non-ring nitrogen atoms. The value of the 

molecular descriptor fnotringNsp3C4B increases with the 

activity profile since it has a positive coefficient. The 

fnotringNsp3C4B is not calculated if the identical sp3 hybrid 

carbon atom is present in 3 or 5 bonds from the carbon atom. 

When comparing molecule 135 (IC50 = 1 nM, 

fnotringNsp3C4B = 2, fnotringNnotringC4B = 2, 

fplaNsp3C4B = 2) to molecule 1670 (IC50 = 371.5 nM, 

fnotringNsp3C4B = 1, fnotringNnotringC4B = 1, 

fplaNsp3C4B = 1), this can be seen (See Fig. 9). A few more 

pairs of molecules: 25 (IC50 = 0.302 nM, fnotringNsp3C4B = 

0, fnotringNnotringC4B = 0, fplaNsp3C4B = 1), 1800 (IC50 

= 83176.3 nM, fnotringNsp3C4B = 0, fnotringNnotringC4B 

= 0, fplaNsp3C4B = 0), 35 (IC50 = 0.372 nM, 

fnotringNsp3C4B = 3, fnotringC4B = 3, fplaNsp3C4B = 3), 

& 1631 (IC50 = 15488.1 nM, fnotringNsp3C4B = 0). Both 

molecules 135 and 1670 include a pyrazole ring; however, 

although molecule 1670's pyrazole ring is completely 

unsubstituted, the pyrazole ring in molecule 135 is 

substituted with a methyl group at the N1 position and a 

carbonitrile group at the 5 locations. This could be a possible 

explanation for the variation in inhibitory efficacy between 

the two compounds. 
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Fig. 9. For molecules 135 and 1670, the fnotringNsp3C4B 

molecular descriptor is shown. 

 

 

      Additionally, Ted W. Johnson et al. reported the synthesis 

of the macrocyclic anaplastic lymphoma kinase (ALK) 

inhibitor PF-06463922. He underlined the relevance of the 

pyrazole ring in increasing the inhibitory impact against 

ALK-TK. He said that it was a good way to get selectivity 

because the cyano part of pyrazole is only one heavier than 

the methyl part, which is not selective. Furthermore, the 

benzylic chiral carbon that has been sp3 hybridized aids in 

identifying the biological target (ALK TK). The descriptor 

fnotringNsp3C4B visualizes these features as well. As a 

result, QSAR analysis not only revealed the reported 

pharmacophoric properties but also determined the sort of 

chiral carbon atom that aids in biological target                   

identification [65]. This finding demonstrates that the total 

number of sp3 hybridised carbons is necessary for ALK TK 

inhibitory activity; however, the model's performance is 

greatly enhanced (R = 0.85) by replacing the molecular 

descriptor fnotringNsp3C4B with fnotringNnotringC4B 

(frequency of the sp3 hybridised carbon atom occurring 

precisely four bonds away from the noncyclic or non-ring 

nitrogen atom). Nonetheless, replacing fnotringNsp3C4B 

with fdonsp3C4B (the frequent occurrence of the sp3 

hybridised carbon atom with exactly 4 donor atom bonds) 

increases the predictive performance (R = 0.88) of the 

established QSAR model. In addition, the model's statistical 

performance (R = 0.76) is somewhat diminished when 

fplaNsp3C4B (the frequency of occurrence of sp3-hybridized 

carbons precisely at 4 bonds from the planar nitrogen atoms) 

is substituted for fnotringNsp3C4B. Recent research has 

shown that sp3-hybridized carbons play a critical role and 

that interacting with the donor atom at the optimal distance 

of 4 bonds greatly enhances the inhibitory impact on ALK 

TK. As a means of enhancing the ALK-TK inhibitory effect, 

it has been  suggested  that  drugs  in  the future make use of  

 

 

donor nitrogen or any donor atom at 4 bonds. 

      In most compounds, the sp3-hybridized carbon acts as a 

linkage or substituent between two rings, improving 

structural flexibility and allowing the molecule to assume a 

bioactive conformation or lipophilic characteristic. 

According to this theory, the chiral features of the sp3 

hybridized carbons reported in molecules 135 and 1670 

confer lipophilicity, promote enantioselectivity for binding 

sites, and are required for the flexible alignment of these 

molecules inside the ALK-TK receptor's active site. 

      Crizotinib, when x-ray crystallized, binds to ALK TK 

through the same motif (fnotringNsp3C4B; pdb id 2xp2). The 

non-ring nitrogen atom anchored Glu 1197 of the binding site 

through a conventional hydrogen bond, while the sp3-

hybridized carbon atom gave the overall flexibility to acquire 

the bioactive conformation at the binding site for maximum 

interaction with ALK TK. The X-ray crystal structure of the 

putative enzyme inhibitor crizotinib (See Fig. 10) 

corroborated the QSAR findings. 

      FdonnotringN5B (The probability of the occurrence of a 

non-ring nitrogen atom is precisely 5 bonds apart from the 

donor atoms.) In the classic QSAR model, this descriptor has 

a positive coefficient; hence, an increase in its value leads to 

a larger degree of ALK-TK inhibition. When comparing 

molecule 245 (IC50 = 2.13 nM, fdonnotringN5B = 1) to 

molecule 1449 (IC50 = 812.8 nM, fdonnotringN5B =0), this 

can be seen. This might explain the differences in the 

inhibitory activity of ALK TKs (See Fig. 11). This 

description demonstrates the significance of donor features 

and  ring  nitrogens  in ALK-TK inhibition. The PIC50  value 

 

 

 
Fig. 10. Illustration of the molecular descriptor 

fnotringNsp3C4B for the crizotinib in complex with ALK 

TK (pdb id-2xp2). 
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Fig. 11. For molecules 245 and 1449, the molecular 

descriptor fdonnotringN5B is shown. 

 

 

(bioactivity) of molecule 1449 rises by around 2.59 units if 

we modify the value of the descriptor fdonnotringN5B from 

0 to 1 (about a 25-fold increase in the ALK TK inhibitory 

potency). WeiSheng Huang et al. revealed the crystal 

structure of resolved brigatinib (AP 26113) in association 

with anaphylactic lymphoma kinase, which supports this 

observation [65]. The ring nitrogen of brigatinib forms 

hydrogen bonds with the HOH A: 1639 water molecule, 

whereas the non-ring nitrogen creates hydrogen bonds with 

the Met A: 1199 residue. The molecule is more flexible since 

the nitrogen is not part of a ring. In the ALK-TK binding 

pocket, it facilitates the transition to an active conformation. 

      Thus, the combination of these non-ring nitrogen and ring 

nitrogen atoms is required to interact with the TK-ALK 

receptor. So, the fdonnotringN5B descriptor found in the 

QSAR model can also be seen in the structure of brigatinib 

as described (See Fig. 12). Hence, the results of the QSAR 

support the published data needed for developing novel 

ALK-TK inhibitors. 

      Statistical findings (R = 0.76) are substantially altered 

when the donor nitrogen (fdonnotringN5B) is utilized in the 

QSAR model instead of the molecular descriptor 

fringNnotringN5B (the number of times the non-ring 

nitrogen is precisely 5 bonds distant from the ring nitrogen). 

Simultaneously, statistical performance (R = 0.86) improves 

when fplaNnotringN5B (frequency of occurrence of non-ring 

nitrogen atoms exactly at 5 bonds from the planar nitrogen 

atom) is substituted for fdonnotringN5B. Therefore, the 

planer nitrogen with donor characteristics may be a better 

choice than the donor atom at the optimal bond spacing of                   

5 bonds to augment TK-ALK inhibitory activity. 

      FaroNC8B denotes the frequency of the occurrence of 

aromatic nitrogen atoms that include carbon atoms in 

precisely 8 bonds. As the  proposed  QSAR  model  shows a 

 

 
Fig. 12. Presentation of the molecular descriptor 

fdonnotringN5B in the Brigatinib (pdb id-6mx8). 

 

 

negative coefficient for this descriptor, raising its value 

would further reduce the inhibitory effects of ALK TK. So, 

further improvements to the molecule should focus on 

lowering the value of faroNC8B to make ALK TK as 

effective as possible at stopping cell growth. According to 

this analysis, carbon and nitrogen are primarily responsible 

for the inhibitory activity of ALK TK. For the purposes of the 

faroNC8B computation, a carbon atom is disregarded if it is 

also part of 7 or 9 other bonds. This remark can be explained 

by comparing molecule 1168 (IC50 = 107.1 nM, faroNC8B = 

2) to molecule 1118 (IC50 = 81.8 nM, faroNC8B = 1). 

Decreasing the faroNC8B descriptor value from 2 to 1 for 

molecule 1168 increases the PIC50 by approximately 0.12 

units (roughly a 1-fold increase in ALK TK inhibitory 

potency for molecule 1168) (See Fig. 13). Further, switching 

the chemical descriptor faroNC8B to faroNsp3C8B (the 

frequency of sp3-hybridized carbon atoms at exactly 8 bonds 

in the aromatic nitrogen atom) will greatly improve the 

prediction accuracy of the QSAR model to R = 0.84. QSAR 

models' statistical performance (R = 0.89) may be greatly 

improved by switching back to the faroNaroC8B ring from 

the faroNC8B molecular descriptor (the frequency of 

occurrence of the ring carbon atom is precisely 8 bonds in the 

aromatic nitrogen atom). 

 

 
Fig. 13. Illustration of the molecular descriptor faroNC8B for 

the molecules 1168 and 1118. 
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      Therefore, evidence suggests that rings of carbon atoms 

are preferable to single carbon atoms for increasing ALK-

TK's inhibitory action. For ALK TK to be most effective as 

an inhibitor, the ring carbon and aromatic nitrogen atoms 

should be separated by eight bonds. A nitrogen atom next to 

an aromatic ring may enhance interactions with polar regions 

of the receptor (ALK TK) since most nitrogen atoms function 

as donors or acceptors for exhibiting hydrogen bonds. In 

addition, the lipophilic character of aromatic rings is implied 

by the descriptors to play a crucial role. 

      FnotringNringN4B (frequency of occurrence of a ring 

nitrogen atom exactly at 4 bonds from a non-ring nitrogen 

atom) As the value of the descriptor goes up in the QSAR 

model that was made, negative coefficients of the descriptor 

make the inhibitor less active. This makes the ALK-TK 

inhibitor less active. This can be demonstrated by comparing 

molecule 192 (PIC50 = 8.77, fnotringNringN4B = 0) with 

molecule 1343 (PIC50 = 6.43, fnotringNringN4B = 1). The 

ALK-TK inhibitory activity of molecule 1343 is increased by 

about 2.34 units (the ALK-TK inhibitory effectiveness of 

molecule 1343 is increased by about 23-fold) when the value 

of the molecular descriptor is decreased from 1 to 0 (See Fig. 

14). 

      Therefore, the optimum distance between ring nitrogen 

and non-ring nitrogen atoms should be 5 bonds, not 4 bonds. 

The chemical combination with hALK, as shown by X-ray 

crystallography (pdb id-3aox). Ethyl-N-(1-(2,4-

difluorophenyl))-1(S)-N-1-(2,4-difluorophenyl)-1-butanone-

3-(3-methyl-1H-Pyrazol-5-yl). The imidine (2, 1-b) 

pyridazin-6-amine offers more confirmation of this 

observation. In addition, unlike molecule 1343, molecule 192 

has the identical non-ring nitrogen atom present precisely at 

2, 3, 5, and 6 links, rather than 4. 

      The  absence  of  a molecular descriptor in molecule 192 

 

 

 
Fig. 14. The fnotringNringN4B molecular descriptor is 

presented only for molecules 192 and 1343. 

 

 
Fig. 15. Portrayal of 1(S)-N-(1-(2, 4-difluorophenyl) ethyl)-

3-(3-methyl-1H-pyrazol-5-yl) imidazo [1,2-b] pyridazin-6-

amine in complex with the human ALK TK (pdb id-3aox) 

shows the evidence for the optimal distance of 5 bonds 

between ring nitrogen and non-ring nitrogen atoms. 

 

 

may be a feasible explanation for their different activities. 

(See Fig. 15) So, the new data showed that five bonds are the 

best distance between the nitrogen atoms in the ring and the 

nitrogen atoms that are not in the ring for a better ALK-TK 

inhibitory profile. 

 

Drug Repositioning and QSAR-Based Virtual 
Screening  
      After making the QSAR model, we used it to predict the 

ALK-TK inhibitory activity of 1650 FDA molecules through 

a QSAR-based virtual screening. The 12 hit molecules                      

were obtained as repurposed drug candidates against the                     

ALK-TK receptor. Based on its PIC50, the molecule 

ZINC000150338819 (Ledipasvir) was chosen as a major hit 

among the top hit molecules. The structures of the top 12 hit 

molecules are depicted in Fig. 16. 

 
Applicability Domain Study of the Identified Hit 
Molecules 
      To evaluate the scope of our QSAR model's applicability, 

we employed a dataset consisting of 1329 molecules for 

training and a set of 12 hit molecules for prediction. QSAR-

based  virtual  screening  yielded 12  compounds,  and these 
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were characterized. HAT i/i h* = 0.016 is a low leverage 

value, and the hit molecules ZINC000150338819, 

ZINC000150588351, ZINC000203686879, and 

ZINC000068204830 are located on the edge of the 

applicability domain in the Williams plot (See Fig. 17). The 

leverage numbers show the degree to which the structure of 

each chemical affects the model. The low leverage value 

shows that the prediction set (seven out of twelve hit 

molecules) is found to be within the applicability domain of 

the training set molecules, providing credence to the 

predicted data for those molecules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Molecular Docking Analysis  
      Signal peptides (1-18), ligand-binding domains (19-

1038), transmembrane regions (1039-1059), and tyrosine 

kinase domains (1060-1620) make up the human ALK 

protein. ALK fusions with a wide variety of partner genes, 

such as NPM-ALK and EML4-ALK, may be triggered by 

chromosomal rearrangements on the 2p23 chromosome tract. 

The kinase domain of ALK consists of two lobes, one tiny at 

the amino terminus (N-lobe) and one large at the carboxyl 

terminus (C-lobe), connected by a hinge region that may open 

or close. The two lobes are separated by a fissure that serves 

 

 
Fig. 16. Depiction of the structures of 12 hit molecules along their zinc database i.d. and predicted pIC50 values obtained in 

the QSAR Based Virtual Screening. 
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as an ATP-binding pocket. The tiny N-lobe is made up of the 

controlling C-helix and five stranded sheets (numbered 1-5) 

[66]. Coordination of ATP39 and phosphates is facilitated by 

a glycine-rich loop (G-loop) between the N-lobe's strands 1 

and 2. The big C-lobe has six conserved helices (D-I) and two 

short conserved strands (7-8) between the E- and F-helices66, 

67. Unphosphorylated ALK kinase domains include eight 

strands within the activation loop (A-loop), with an extra 

helix (EF) following. Hydrophobic non-contiguous motifs of 

ALK's N- and C-lobes spanning regulatory (R-spine) and 

catalytic (C-spine) regions are also maintained.  

      During insulin receptor activation, the R-spine is put 

together. Its disassembly controls the cycles of ALK41 

activation and deactivation by changing the structure of the 

A-loop and C-helix. ALK's catalytic activity depends on the 

amino acid residues Lys 1150, Glu 1167, Asp 1249, and Asp 

1270 (the K/E/D/D signature) in the ATP binding region [66, 

67]. Biochemical studies have shown that auto-

phosphorylation of the Y'RAS'YY motif in the A-loop can 

change how well ALK binds to substrates and how well it 

works as a catalyst [66,67]. Comparing the structures of wild 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and mutant ALK TK, one can see key differences, such as an 

expanded opening in the former. Based on this finding, it 

appears that molecules with more flexible characteristics can 

more readily access the binding pocket of mutant ALK-TK 

(See Fig. 18). 

      The co-crystal structures of wild-type (pdb-4cmu) and 

mutant L1196M ALK (pdb-4clj) were analysed to determine 

the binding interactions between identified hit molecules and 

ALK TK wild-type and mutant strains. In addition to some 

novel clinically established antiviral agents (Ledipasvir, 

Elbasvir, Velpatasvir, and Daclatasvir), the QSAR-based 

virtual screening successfully identified some of the 

clinically established (FDA-approved) ALK TK inhibitors 

(ZINC000066166864 (Alectinib), ZINC000148723177 

(Brigatinib), and ZINC000096272772 (Ceritinib). All 

reported hit compounds were docked to ALK TK wild (pdb-

4cum wt) and mutant strains (pdb-4clj mutant) to analyze the 

binding relationships. The QSAR-based virtual screening 

anticipated several FDA compounds' ALK-TK inhibitory 

activity. The docking scores and predicted activity (PIC50)               

of the 12 hit molecules  for the  wild-type ALK TK  and  the  

 
Fig. 17. The 12 hit molecules from the QSAR-based virtual screening are shown in a Williams plot for their potential 

applicability domain (blue dots represent the hit molecules). 
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mutant L1196M TK are shown in Tables 1 and 2, 

respectively. The QSAR-based virtual screening showed that 

all antiviral drugs had a greater PIC50 against both wild and 

mutant ALK TK strains than the clinically proven ALK TK 

inhibitors (See Tables 3 and 4). ZINC000150338819 

(Ledipasvir) had the highest docking score of                                      

-10.57 kcal mol-1 against the ALK TK (pdb-4cmu) wild strain 

and -8.52 kcal mol-1 against the ALK TK mutant strain (pdb-

4clj, mutant) among the 12 discovered hit molecules, which 

was higher than ceritinib. Ledipasvir exhibited a higher 

docking score against the ALK TK (pdb-4cmu) wild strain 

than the clinically established ALK TK inhibitors: 

ZINC000066166864 (Alectinib, docking score of                                                

-7.65 kcal mol-1), ZINC000148723177 (Brigatinib, docking 

score of -8.45 kcal mol-1), and ZINC000096272772 

(Ceritinib, docking score of -8.17 kcal mol-1) (Fig. 19 depicts 

the interaction of ZINC000150338819 (Ledipasvir) with the 

ALK TK wild and mutant strains). 

      Also, Ledipasvir's docking score against the ALK TK 

mutant strain (pdb-4clj) was -8.52 kcal mol-1, which was 

higher than Alectinib, Brigatinib, and Ceritinib. Also, the 

other hit molecules, ZINC000150588351 (Elbasvir), 

ZINC000203686879 (Velpatasvir), and ZINC000068204830 

(Daclatasvir) had higher docking scores against both wild 

and mutant strains of the ALK TK than Alectinib, Brigatinib, 

and ceritinib,  which are  already  used to  stop  the ALK TK  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from working. Ledipasvir has better binding energy than 

ceritinib (-38.64 kcal mol-1 against wild-typed ALK TK and 

-34.64 kcal mol-1 against mutant ALK TK strain) and the 

other ALK TK inhibitors (-38.64 kcal mol-1 against wild-

typed ALK TK and -34.64 kcal mol-1 against mutant ALK TK 

strain). Furthermore, the remaining antiviral drugs had 

increased binding affinity when compared to ceritinib and 

other ALK-TK inhibitors. This finding demonstrated that 

Ledipasvir has a greater affinity for the ALK TK in both 

wild-type and mutant strains. 

      In the ALK TK wild-type-Ledipasvir complex, we saw 

that the binding energy was -3.56 kcal mol-1 and that residue 

L1198 in the hinge segment was only 4.13 atoms away from 

Ledipasvir. This shows that residue L1198 and ledipasvir 

have a direct hydrophobic interaction.  

      The fact that the ALK TK mutant strain interacts with 

Ledipasvir more hydrophobically than the natural ALK TK 

shows that it has a high affinity. The residue Arg1253 formed 

conventional hydrogen bonds with Ledipasvir, while water 

formed hydrogen bonds with HOH2155, HOH2151, and 

HOH2151. In the active "DFG-in" shape of wild-type ALK 

TK, it takes -0.33 kcal mol-1 of energy for ledipasvir to 

interact with Met1199. In the mutant strain, it takes                            

-0.88 kcal mol-1. This finding indicates the increased affinity 

of Ledipasvir for mutant ALK TK as compared to the wild 

strain, despite the fact that the contact distance between both 

 
Fig. 18. Protein Structures of wild (A) and mutant (B) ALK Tyrosine kinase. 
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strains was around 3.88. The terminal azaspiro ring forms a 

good hydrophobic interaction with the Ala1200, and the 

nearby methyl isobutyl carbamate showed two carbon-

hydrogen bonding contacts with the Gly1201-Gly1202 of the 

hinge segment. This may be why Ledipasvir is more selective 

and effective than ceritinib, brigatinib, and alectinib. At the 

same time, the increased potency of Ledipasvir may be due 

in large part to the stronger interactions between the methyl 

group in isobutyl carbamate and Leu1198. Also, the  mutant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALK TK had two carbon-hydrogen bonding contacts 

between residue Gly1202 and both fluorine atoms as 

acceptors in the Ledipasvir, with a binding energy of                     

-1.86 kcal mol-1.   

      It was determined that the contact distance between 

Gly1202 and fluorine atoms was 4.14. No similar contact was 

discovered between Gly1202 and fluorine atoms in the wild 

ALK TK, which had a boat-shaped structure. Moreover,           

the orientation of fluorine atoms in the  hydrophobic  pocket 

 
Fig. 19. Depiction of 2D interaction) of ZINC000150338819 (Ledipasvir) with ALK TK wild strain (A) and mutant strain (B).  

 

 

Table 3. Depiction of the Docking Results of the 12 hits for ALK TK (pdb-4cmu, wild Strain) 

 

SN ZINC I.D. hit molecules PIC50 by QSAR VS 
Docking score  

(kcal mol-1) 
RMSD Å Binding free energy 

1 ZINC000150338755 (Venetoclax) 9.36 -9.90 1.64 -38.63 

2 ZINC000150338819 (Ledipasvir) 9.18 -10.57 1.54 -55.19 

3 ZINC000150588351 (Elbasvir) 9.02 -9.93 2.37 -61.26 

4 ZINC000066166864 (Alectinib) 8.67 -7.65 1.96 -34.99 

5 ZINC000203686879 (Velpatasvir) 8.58 -10.08 2.10 -51.97 

6 ZINC000148723177 (Brigatinib) 8.53 -8.45 1.78 -29.96 

7 ZINC000096272772 (Ceritinib) 8.28 -8.17 1.58 -38.64 

8 ZINC000028639340 8.25 -8.94 2.65 -50.07 

9 ZINC000003938482 (Posaconazole) 8.25 -9.70 1.59 -49.49 

10 ZINC000072316335 (Ribociclib) 8.20 -7.48 1.12 -34.62 

11 ZINC000068204830 (Daclatasvir) 8.14 -10.10 2.15 -49.15 

12 ZINC000003787097 (Besifloxacin) 8.03 -7.10 0.99 -32.95 
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makes closer contact with the Asn1254 residue of the mutant 

ALK-TK, thereby enhancing intermolecular interactions and 

stabilizing its chair-shaped conformation. This is analogous 

to the orientation of fluorine atoms towards the Asn1254 

residue of the pdb-4clj ligand. The differential in binding free 

energy between the two strains might be attributed to 

Ledipasvir's   differing  conformations  towards  normal and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mutant ALK TK. Furthermore, the wild ALK TK had a 

fluorine atom arrangement with a dihedral angle of 52.2 

degrees, whereas the mutant ALK TK had an angle of 70 

degrees, showing an 18-degree rotational alteration. This 

demonstrates that the mutant ALK TK undergoes significant 

conformational changes that alter its ability to bind 

Ledipasvir. The 2D interactions for ceritinib are revealed in 

Fig. 20. 

Table 4. Depiction of the Docking Results of 12 hits for ALK TK (pdb-4clj, Mutant Strain) 

 

sn ZINC I.D. 
PIC50 by 

QSAR VS 

Docking Score 

(kcal mol-1) 

RMSD 

A0 Binding free energy 

1 ZINC000150338755 (Venetoclax) 9.36 -8.87 2.28 -46.77 

2 ZINC000150338819(Ledipasvir) 9.18 -8.52 2.09 -37.33 

3 ZINC000150588351(Elbasvir) 9.02 -8.95 4.25 -39.68 

4 ZINC000066166864 (Alectinib) 8.67 -7.70 1.47 -32.47 

5 ZINC000203686879 (Velpatasvir) 8.58 -9.35 1.70 -31.60 

6 ZINC000148723177(Brigatinib) 8.53 -8.33 1.70 -40.17 

7 ZINC000096272772(Ceritinib) 8.28 -8.36 1.60 -34.64 

8 ZINC000028639340 8.25 -7.07 2.19 -23.41 

9 ZINC000003938482(Posaconazole) 8.25 -8.29 3.46 -44.94 

10 ZINC000072316335(Ribociclib) 8.20 -7.93 3.70 -39.19 

11 ZINC000068204830(Daclatasvir) 8.14 -8.43 4.77 -41.96 

12 ZINC000003787097(Besifloxacin) 8.03 -7.27 1.89 -30.17 
 

 
Fig. 20. Depiction of 2D interaction) of ZINC000096272772 (Ceritinib) with ALK TK wild strain (A) and mutant strain(B).  
 

609 



 

 

 

Seyfinejad et al./Phys. Chem. Res., Vol. 12, No. 3, 591-620, September 2024. 

 

 

Molecular Dynamics (MD) Simulations 
      Using MD simulations, we compared the effect of 

mutation on the conformational dynamics of wild-type, 

mutant, and apo-ALK-TK (noncomplex proteins) by 

measuring the root-mean-square deviation (RMSD) of the C 

atoms in the A-loop of the two variants. The apo-ALK 

tyrosine kinase (TK) exhibited overall stability over the 200-

nanosecond simulation, with the exception of a notable 

fluctuation seen between 60 and 85 nanoseconds. Over this 

period, the root mean square deviation (RMSD) ranged from 

2.0 to 2.2 angstroms, specifically in relation to the c-alpha 

atoms. Ultimately, the system reached convergence at an 

RMSD value of 2.27 angstroms. It was observed that the apo-

ALK tyrosine kinase (TK) had greater fluctuations in both 

the back region, with a root-mean-square deviation (RMSD) 

of 2.3 Å, and the sidechain region, in comparison to the             

C- and backbone regions, which displayed an RMSD of 3.2 

(see Fig. 1B). Further, Fig. 1 shows that after 40 ns 

throughout the simulation, the RMSD of the A-loop in the 

wild type converged to a value of 1.8. However, in the L1196 

mutant, the A-loop RMSD increased to 2.4 at 40 ns and 

fluctuated between 40 and 50 ns. The value then reached 3.1 

between 80 and 90 ns before decreasing again to 2.4 between 

100 and 110 ns. Eventually, it climbed from 2.6 to 2.8 during 

the remainder of the MD simulation. This shows that the                   

A-loop shape of the L1196 mutant is more flexible than that 

of the normal type (See Fig. 21).  

      We used MD simulations to measure the root-mean-

square deviation (RMSD) of the C atoms in the A-loop of the 

wild and mutant states of ALK TK. This helped us Figure out 

how mutation affects the conformational dynamics of wild 

and mutant ALK TK. Figure 19 shows that after 40 ns 

throughout the simulation, the RMSD of the A-loop in the 

wild type converged to a value of 1.8. Conversely, the L1196 

mutant showed an increase in the A-loop RMSD to 2.4 at                  

40 ns, with values ranging from 40 to 50 ns. The value then 

reached 3.1 between 80 and 90 ns before decreasing again to 

2.4 between 100 and 110 ns. Eventually, it climbed from 2.6 

to 2.8 during the remainder of the MD simulation. This shows 

that the A-loop shape of the L1196 mutant is more flexible 

than that of the normal type.  

      Figure 22 shows that the Rg plot of the C-backbone                        

of  ALK TK  wild-type  bound  to  Ledipasvir  has  the  least  

 

 

compactness because fluctuations go from 20.1 to 20.7, with 

a mean of 20,3 over 200 ns. On the other hand, when the 

ALK-TK mutant was bound to Ledipasvir, the C backbone 

showed a consistent gyration at 8.5 with few changes. When 

Rg decreases, it means that the protein-ligand complex is 

firmly bound. Mutant ALK-TK complexes coupled with 

Ledipasvir were much more stable than wild-type ALK-TK 

complexes associated with Ledipasvir. Throughout the 

simulation, the RMSF plot showed that each amino acid 

residue was in its most stable shape. This showed that the 

amino acid residues in the complex of ledipasvir-bound wild-

type and mutant ALK TK were the least likely to change (See 

Fig. 23).  

      Global quality analysis of RMSD and Rg shows that 

ledipasvir has a big effect on the stability of both wild-type 

and mutant ALK TK targets after they have been bound in 

the binding cavities. Analysis of root mean square fluctuation 

(RMSF) plots using a time function of 200 nanoseconds 

showed that both the wild-type and mutant ALK-TK proteins 

had significant RMSF at certain residues. In contrast, the apo-

ALK TK demonstrated comparatively lower levels of 

fluctuation. There are a few peaks that fluctuate from residue 

index 60 to 90 in the 200-ns simulation run of ALK TK 

depicted in Fig. 21, but they eventually settle in wild-type 

ALK TK. Comparing the ALK-TK wild-Ledipasvir complex 

to the docking data, it was shown that Arg1253 was engaged 

in traditional hydrogen bond formation with an RMSF of 

0.602 (Fig. 23). In contrast, the residues Gly1202 and 

Leu1198 exhibited carbon-hydrogen bonding interactions 

with RMSF values of 0.78 and 0.68, respectively. Hydrogen 

bonding contributes to the stability of the complex, as shown 

by the smaller RMSF fluctuations of these residues compared 

to others. The ALK TK mutant Ledipasvir-bound complex 

exhibited two typical hydrogen bond forms with residues 

Asp1203 and Ala1126, with RMSFs of 0.63 and 1.56, 

respectively. To sum up, the RMSF plot analysis revealed 

that the ALK wild-type and mutant strains showed different 

binding patterns and fluctuations during the 200 ns 

simulation. All of these RMSFs are within the range that 

would be expected to stabilize the protein-ligand 

combination. So, RMSF plots suggest that the ALK-TK 

mutant's binding to Ledipasvir was stable across many 

simulated protein configurations. 
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(A)                                                                                           (B) 

 

Fig. 21. (A) Root Mean Square Deviation (RMSD) analysis of MD simulation trajectories for (i) wild (4cmu) Ledipasvir-

ALK TK, (ii) mutant (green, yellow) (4clj) Ledipasvir-ALK TK, (iii) wild (4cmu) Ceritinib-ALK TK, and (iv) mutant (red, 

4clj) Ceritinib-ALK TK. (B) RMSD plot for the Apo-4cmu (non-complex) ALK TK protein. 

 

 

 
Fig. 22. Radius of gyration (Rg) trajectory study using MD simulations for [i] wild (4cmu) and [ii] mutant (4clj) Ledipasvir-

ALK TK, [iii] wild (4cmu) and [iv] mutant (4clj) Ceritinib-ALK TK. 
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      During the 200 ns simulation, average hydrogen bonds 

between ledipasvir and the other proteins were also kept track 

of Fig. 24. From 0 to 200 ns, the MD simulation of Ledipasvir 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

showed that hydrogen bonds formed with both wild-type and 

mutant ALK TK. Similar numbers of hydrogen bonds were 

established in  the  wild-type  Ledipasvir-ALK TK  complex 

 
(A)                                                                                     (B) 

Fig. 23. (A) Root Mean Square Fluctuations (RMSF) in MD simulations of [i] wild (4cmu) and [ii] mutant (4clj) Ledipasvir-

ALK TK, [iii] wild (4cmu) and [iv] mutant (4clj) Ceritinib-ALK TK. (B) Root Mean Square Fluctuations (RMSF) in MD 

simulations of Apo-ALK TK (non-complexed ALK TK). 

 

 

 
Fig. 24. Hydrogen bond (H-Bond) trajectory study using MD simulations for [i] wild (4cmu) and [ii] mutant (4clj) 

Ledipasvir-ALK TK, [iii] wild (4cmu) and [iv] mutant (4clj) Ceritinib-ALK TK, and [v] mutant (4clj). 
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(Fig. 24 iv). In addition, docking with wild-type and mutant 

strains of ALK and TK verified the tendency for two to three 

hydrogen bonds to be formed after 200 ns of molecular 

dynamics. Hydrogen bonding between wild-type and mutant 

ALK-TK strains and Ledipasvir enhanced binding and 

allowed the conformation to form a more stable complex 

during simulation. 

      A stepwise trajectory analysis performed at 50 ns 

intervals revealed that both wild-type and mutant ALK 

tyrosine kinases moved with respect to the 0 ns structure after 

treatment with ledipasvir and ceritinib (Fig. 25). 

Conformational stability and convergence in the ligand 

ledipasvir have been observed through structural angular 

movement in the final frame. However, mutants linked to 

ledipasvir exhibit behavior consistent with structural 

stability.  

 

Molecular Mechanics Generalised Born Surface 
Area (MMGBSA) 
      For the most part, the MMGBSA technique is used to 

determine the degree of ligand-protein binding. Ledipasvir-

ALK TK wild-type (4cmu) and mutant (4clj) complexes' 

binding free energies were determined, as were the binding 

free energies of ceritinib-ALK TK wild-type (4cmu) and 

mutant (4clj) complexes and the influence of other non- 

bonded interaction energies. The binding energies of the 

Ledipasvir ligand to the wild-type (4cmu) and mutant (4clj) 

ALK TK complexes were -47.77 and -61.68 kcal mol-1, 

respectively. Table 5 displays the average binding energies 

of the wild-type (4cmu) and mutant (4clj) ceritinib-ALK TK 

complexes,   which    are    -58.49   and     -51.31  kcal mol-1, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

respectively. Ledipasvir showed a much higher binding 

affinity for mutant ALK TK than for natural ALK TK, in 

contrast to ceritinib. Gbind is controlled by a variety of 

interactions that don't include a covalent bond, including 

GbindCoulomb, GbindCovalent, GbindHbond, GbindLipo, 

GbindSolvGB, and GbindvdW. Energy contributions from 

GbindLipo and GbindCoulomb were less than those from 

GbindvdW, but all three energies played a role in the binding 

affinity between wild-type and mutant ALK TK and ceritinib. 

An essential function for GbindvdW in drug-receptor 

interactions has been uncovered. Contrarily, the 

GbindSolvGB and Gbind covalent energies had the smallest 

impact on the overall mean binding energies. 

      Both wild-type and mutant complexes of ledipasvir and 

ceritinib-ALK TK were found to form stable hydrogen bonds 

with amino acid residues. This was shown by their 

GbindHbond interaction values. Each molecule was shown 

to have a negative energy contribution by both GbindSolvGB 

and GbindCovalent, suggesting that they resisted binding. 

Inside the binding pockets of wild-type and mutant ALK-TK 

proteins (200 ns), the shape of ledipasvir and ceritinib has 

changed dramatically, going from curved to straight. Because 

of these changes in the conformation, there is more contact 

between the binding pocket and the residues, which increases 

stability and binding energy.  

      Since MM-GBSA predictions were made using MD 

simulation trajectories, the docking data used to figure out the 

binding energy agreed with them. Ledipasvir and ceritinib 

also shifted from their positions in the 0 ns trajectory to their 

positions in the 200 ns trajectory in the last frame of the 

MMGBSA, indicating that they are in a better position to fit 

into the protein's binding cavity (See Fig. 26).  

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Presentation of the MMGBSA Results for the Ledipasvir and Ceritinib Wild and Mutant ALK TK Strains 

 

Energies (kcal mol-1)* Ledipasvir-ALK-TK 

wild (4cmu) 

Ledipasvir-ALK-

TK mutant (4clj) 

Ceritinib-ALK-TK 

wild (4cmu) 

Ceritinib-ALK TK-

mutant (4clj) 

ΔGbind -47.77 ± 6.95 -61.68 ± 8.16 -58.49 ± 4.42 -51.31 ± 6.29 

ΔGbindLipo -17.98 ± 1.95 -22.92 ± 2.55 -19.20 ± 1.46 -17.51 ± 2.01 

ΔGbindvdW -52.58 ± 6.71 -66.37 ± 5.71 -54.49 ± 3.75 -54.21 ± 5.77 

ΔGbindCoulomb -17.51 ± 15.17 9.10 ± 13.51 10.96 ± 10.63 11.57 ± 3.17 

ΔGbindHbond -0.85 ± 0.47 -0.93 ± 0.53 -0.9 5 ± 0.50 -0.60 ± 0.35 

ΔGbindSolvGB 9.98 ± 13.37 14.32 ± 12.01 -1.40 ± 9.36 5.82 ± 3.12 

ΔGbindCovalent 6.86 ± 3.59 5.59 ± 2.66 6.59 ± 3.12 3.64 ± 2.17 
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[i] Ledipasvir-ALK TK wild (4cmu)                       [ii] Ledipasvir-ALK TK mutant (4clj) 

 

 
[iii] Ceritinib-ALK TK wild (4cmu)                                               [iv] Ceritinib-ALK TK mutant (4clj) 

 

Fig. 25. After simulating the protein and ligand for 200 ns, a step-by-step trajectory analysis shows the configuration of the 

protein and ligand every 25 ns for [i] Ledipasvir-ALK TK wild (4cmu) and [ii] Ledipasvir-ALK TK mutant(4clj), [iii] 

Ceritinib-ALK TK wild (4cmu), and [iv] Ceritinib-ALK TK mutant (4clj). 
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MTT Assay (In-Vitro Cell Line Study) 
      We have used A549 cell lines for in vitro investigations 

to determine the anticancer potential of our most active hits, 

Ledipasvir and posaconazole. In the current investigation, 

ledipasvir and posaconazole were chosen for in vitro cell line 

studies because they are both located in or very close to the 

applicability domain in the QSAR model. 

      According to the results of our study (Table S5 I 

Supplementary Material) of in vitro anticancer activity on the 

A549 lung cancer cell line, we found that the percentage of 

inhibition for our acquired hit, which is Ledipasvir, was 

somewhat greater than that of the standard reference 

molecule (See Fig. 27), Ceritinib (which is a kinase 

inhibitor). The results are in agreement with the 

computational models, suggesting that the identical 

mechanism that suppressed the A549 lung cancer cell line 

may be responsible for suppressing the  ALK TK  target. On  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the other hand, we feel that more enzyme examinations are 

necessary in order to get further insights. 

 

 

 
Fig. 27. Depiction of in-vitro evaluation of anticancer 

activity. 

     
Fig. 26. A. Ledipasvir-ALK TK wild (4cmu); B. Ledipasvir-ALK TK mutant (4clj); C. Ceritinib-ALK TK wild (4cmu); 

D. Ceritinib-ALK TK mutant (4clj) demonstrated conformational alterations in the MMGBSA trajectory (0 ns, before 

simulation and 200 ns, after simulation). Ledipasvir (green) and Ceritinib (red) are shown at their respective binding sites 

for ALK wild type (pdb-4cmu) and ALK mutant type (pdb-4clj) strains, with their relative movement and orientation 

indicated by arrows. 
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CONCLUSIONS 
 

      For the relatively large data set of 1328 compounds with 

TK-ALK inhibitory activity (IC50), a QSAR model was made 

using six descriptors. The robust and predictive QSAR model 

fulfills all the required threshold values, such as R2 = 0.79, 

Q2
LOO = 0.78, Q2

LMO = 0.78, R2
ex = 0.77, CCCex = 0.87, etc. 

Several hidden pharmacophoric properties, such as the sum 

of partial charges of aromatic carbons, sp3-hybridized 

carbons within 4 bonds of non-cyclic carbons, and planer 

nitrogen within 6 bonds of the ring carbon atom, have been 

effectively detected using the created model. Based on the 

findings of the Quantitative Structure-Activity Relationship 

(QSAR) analysis, it was revealed that the presence of the 

aromatic or ring carbon atom, the ring nitrogen atom, or the 

non-ring nitrogen atom had a substantial impact on the 

determination of the inhibitory activity of ALK TK. X-ray-

resolved structures validated the combination of disclosed 

and concealed structural characteristics, which was similarly 

seen in reported TK ALK inhibitors such as crizotinib, 

brigatinib, etc. In addition to this, a blend of QSAR-based 

virtual screening and drug repositioning recognized a 

ledipasvir as an FDA-approved molecule that has been tested 

in clinical trials and has an IC50 of 0.65 nM (PIC50-9.18 M). 

The molecular docking study of ledipasvir displayed a 

docking score of -10.57 kcal mol-1 against the ALK TK wild 

strain (pdb-4cmu) and a docking score of -8.5286303 

kcal/mol against the ALK TK mutant strain (pdb-4clj, 

mutant) which was higher than ceritinib. Based on docking 

analysis, ledipasvir has a higher binding energy than ceritinib 

(-38.64 kcal mol-1 against wild ALK TK and -34.64 kcal/mol 

against the mutant ALK TK strain) and other drugs that block 

ALK TK. Thus, the ledipasvir exhibited a significant affinity, 

as the ALK-TK mutant strain made more hydrophobic 

contact with it than the wild strain. The MD simulation and 

MMGBSA analysis demonstrated that the drug-receptor 

complex was stable over 200 ns, and the binding energy was 

very high. The mutant ALK TK-ledipasvir complex was 

substantially more stable than the wild ALK TK complex. 

Thus, molecular dynamics (MD) simulation trajectories and 

binding energy docking data supported MM-GBSA 

predictions. Furthermore, the MTT assay demonstrated that 

the ledipasvir had slightly higher anticancer activity against 

the lung cancer cell line A549 as compared  to the  clinically  

 

 

established anticancer agent; ceritinib. As a result, the 

findings from the in-silico study corroborate the in vitro 

anticancer efficacy. Therefore, the present findings might be 

very beneficial in developing a brand-new ALK-TK as a 

chemotherapeutic drug. 
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