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      The examination of available vapor pressure data in the case of the methane, ethane, propane and butane halogenated refrigerants, 
allowed recommendations of standard equations for this property. In this study, three new models include a general correlation; a 
substance-dependent correlation and an artificial neural network (ANN) approach have been developed to estimate the saturated vapor 
pressure of refrigerants. With the presented approaches, vapor pressures have been calculated and compared with source data bank for 5600 
data points of 28 refrigerants. The accuracies of new correlations and ANN have been compared with most commonly used correlations 
and the comparison indicates that all new models provide more accurate results than other literature correlations considered in this work. 
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INTRODUCTION 
 
      Knowledge of the vapor pressure values of pure 
compounds such as refrigerants is essential for the design of 
process equipment especially in the field of refrigeration 
and air conditioning. Usually, vapor pressure data with a 
wide range of temperature are not accessible and also there 
is a lack of information about accurate measurements near 
the critical and triple points [1]. 
      Because of the absence and limited range of saturated 
vapor pressure experimental data in the literature, some 
researchers have used different empirical models for vapor 
pressure to predict equation of state parameters [2-5]. 
      Numerous models are reported in the literature for the 
vapor pressure prediction. The most commonly used model 
is a three-parameter Antoine type equation [6], which is 
valid   only   within   a    limited   temperature    range   with 
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approximately high deviations. Although the Gomez-
Thodos [7] and Lee-Kesler’s equations [8] perform 
satisfactorily, they are generally failed to describe the 
critical region adequately. 
      One of the most efficient and accurate methods for 
calculating vapor pressure of pure substances, is computer-
aided artificial neural network (ANN). Neural networks are 
information-processing patterns based on the biological 
nervous systems, such as the brain and process information 
[9]. Recently, ANN has been used to predict pressure-
volume-temperature (PVT) properties of pure substances by 
Moghadasi et al. [10]. Rohani and coworkers [11] 
considered artificial neural network system and SAFT 
equation of state in obtaining vapor pressure and liquid 
density of pure alcohols. Lazzus [12] predicted solid vapor 
pressures of organic and inorganic compounds using ANN, 
and Gandhidasan et al. [13] estimated vapor pressures of 
aqueous desiccants for cooling applications. 
      This study represents a general correlation, a substance-
dependent   correlation,   and   an  artificial  neural  network  
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(ANN) approach based on liquid-vapor equilibrium data 
that accurately reproduces the vapor pressure behavior over 
a wide range of the liquid-vapor coexistence region. The 
source of vapor pressure data used in this study is the NIST 
Chemistry WebBook [14]. 
 
VAPOR PRESSURE CORRELATIONS 
 
Lee-Kesler’s Correlation 
      The Lee-Kesler’s correlation [8] is one of the successful 
models to estimate the vapor pressure of pure substances 
using the three-parameter formulations. 
 

      )()(ln )1()0(
rrvpr TfTfP                                            

  (1) 

                                                                                                

      
6)0( 169347.0ln28862.109648.692714.5 rr

r

TT
T

f       (2)  

                                                  

      
6)1( 43577.0ln4721.136875.152518.15 rr

r

TT
T

f          (3)                                                  

 
where Pvpr is the reduced vapor pressure equal to P/Pc, and 
Pc is the critical pressure (pascal), ω is the acentric factor; Tr 
is the reduced temperature equal to T/Tc, where Tc is the 
critical temperature (K) of the fluid. Values for Tc and Pc 
can be found in the literature for many pure substances [15-
18]. 
 
Ambrose-Walton Correlation 
      Ambrose and Walton [15] developed another 
representation of the Pitzer expansion with an additional 
term f (2) (Tr). 
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where ω is the acentric factor, Pc is the critical pressure 
(bars) of the fluid, and τ = 1 - Tr. 
 
Riedel Corresponding States 
     Riedel [19] proposed a vapor pressure equation as 
follows: 
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The 6

rT  term allows description of the inflection point of the 
vapor pressure curve in the high-pressure region. Parameters 
A, B, C and D are functions of T, Tc, Tb and Pc, which are 
presented in Supplementary data file (see Table 1 in 
Supplementary data file) for 28 refrigerants. 
 
Wagner Equation 
      Wagner [20] used an elaborate statistical method to 
develop an equation for representing the vapor pressure 
behavior of nitrogen and argon over the entire temperature 
range for which experimental data were available. The 
resulting equation is: 
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where  = 1 - T/Tc, Pc is the critical pressure, Tc is the 
critical temperature, and A, B, C and D are substance-
dependent parameters presented in Supplementary data file 
(see Table 1 in Supplementary data file). Forero et al. in 
2011 [21], determined Wagner equation parameters for 257 
substances with low deviations. 
 
Sanjari et al. Correlation 
      Sanjari et al. [22] proposed a vapor pressure correlation 
for refrigerants as follows: 
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Table 1. Average Absolute Deviation of the Values Obtained by Presented Models in Comparison with Literature Models 
 

Substances Lee-Kesler Ambrose-Walton Riedel Wagner Sanjari et al. Model I Model II ANN 

R11 0.94 1.14 1.42 1.64 1.41 1.13 0.52 0.21 

R113 1.23 0.94 1.04 0.82 1.14 1.09 0.47 0.26 

R114 1.51 1.31 1.56 1.40 0.89 1.14 0.40 0.38 

R115 3.39 3.88 3.51 5.17 0.79 3.05 0.56 0.33 

R116 2.52 0.40 2.53 3.08 1.11 0.88 0.69 0.25 

R12 1.95 0.44 2.70 1.09 0.54 1.42 0.67 0.19 

R123 1.44 0.60 1.17 0.34 0.85 1.06 0.45 0.26 

R124 0.93 0.91 0.67 0.39 0.72 0.86 0.50 0.21 

R125 1.15 1.53 0.93 1.10 1.24 1.75 0.58 0.23 

R13 1.41 0.54 1.82 1.37 0.81 1.53 0.56 0.22 

R134a 2.40 0.49 2.10 0.34 0.54 0.54 0.63 0.28 

R141b 1.00 1.34 1.02 3.20 2.87 1.50 0.92 0.20 

R142b 2.54 0.72 2.77 1.42 1.31 1.18 0.75 0.20 

R143a 4.15 1.80 4.86 0.13 0.54 2.13 0.60 0.22 

R152a 4.56 1.97 5.61 0.32 1.36 2.13 0.64 0.15 

R21 0.91 1.92 0.72 6.97 1.11 2.49 2.04 0.26 

R218 2.01 0.60 1.52 2.78 0.87 0.63 0.82 0.18 

R22 1.06 1.22 1.64 1.45 0.57 0.92 0.71 0.25 

R227ea 2.00 0.18 1.36 1.44 0.29 0.54 0.52 0.26 

R23 4.46 1.79 5.73 0.27 1.16 2.46 0.75 0.28 

R236ea 21.94 18.45 21.33 23.69 6.04 1.87 0.26 0.32 

R236fa 1.93 0.50 1.02 2.24 3.26 0.58 1.12 0.23 

R245ca 2.82 0.42 2.67 0.19 1.80 0.66 0.56 0.24 

R245fa 0.67 2.65 1.35 0.21 5.60 2.30 0.70 0.29 

R32 7.61 4.35 10.62 1.40 5.29 2.06 0.79 0.30 

R41 11.04 7.38 17.08 1.57 2.79 2.80 1.36 0.38 
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ARTIFICIAL NEURAL NETWORK (ANN) 
 
      Neural networks (also referred to as connectionist 
systems) are a computational approach based on a large 
collection of neural units loosely modeling the way a 
biological brain solves problems with large clusters of 
biological neurons connected by axons. Each neural unit is 
connected with many others, and links can be enforcing or 
inhibitory in their effect on the activation state of the 
connected neural units. Each individual neural unit may 
have a summation function which combines the values of all 
its inputs together. There may be a threshold function or 
limiting function on each connection and on the unit itself 
such that it must surpass it before it can propagate to other 
neurons. These systems are self-learning and trained rather 
than explicitly programmed and excel in areas where the 
solution or feature detection is difficult to express in a 
traditional computer program [23]. 
      Neural networks typically consist of multiple layers or a 
cube design, and the signal path traverses from front to 
back.  
      The sample for a three layer feed forward ANN is 
schematically presented in Fig. 1. An ANN includes some 
simple processing units as neurons. Each neuron of the 
ANN is connected to other neurons by direct connection 
links, which represents some information to solve the 
problem. Following equation can compute the output of a 
neuron: 
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where O j = jth neurons output, f = transfer function or 
activation, w ji = weight corresponding to ith synapse of jth 
neuron, bj = bias of jth neuron, n = number of input signals 
to jth neuron and xi = ith input signal to jth neuron [24,25]. 
Between    all     types   of   neural    networks,    the   “Back 

 
 
Propagation (BP)” method is the most universally used 
algorithm to estimate all thermodynamic properties of pure 
and mixture substances. Several back-propagation 
algorithms are including the Levenberg-Marguardt (LM), 
the Pola-Ribiere Conjugate Gradient (PCG), the Scaled 
Conjugate Gradient (SCG) and others. The LM, that similar 
to Gauss-Newton (GW) algorithm, is used in a back-
propagation of deviation manner. 
      The large collection of samples needed to make an ANN 
with good quality. A set of data was collected from standard 
data bank [14]. Data source contains more than 5500 points 
of saturated pure refrigerants. 
      Number of neurons in hidden layer has been consistently 
varied to obtain a good predict of the trained data. Different 
number of neurons was considered to find the optimum 
number of nodes in the hidden layer, which provides good 
predict of the output. The scale for deviation was AAD% 
between output and training data. As shown in Fig. 2, 
architecture of ANN with 30 neurons has the least AAD% 
for data set with equals to 0.25%. Figure 3 shows the 
network structure with hidden layer include 30 neurons. 
 
EMPIRICAL CORRELATIONS FOR 
VAPOR PRESSURE OF REFRIGERANTS 
 
      This work tried to find two rapid simple correlations to 
estimate vapor pressure of methane, ethane, propane and 
butane halogenated refrigerants based on vapor pressure 
data with high accuracy compared to literature correlations 
by using reduced temperature, critical pressure and acentric 
factor. There are some available data in source [14] to allow 
the comparison of equations for the vapor pressure of 
saturated refrigerants. After multiple regression analysis, 
two new equations were suggested as follows: 
 
Model I: A General Substance-independent 
Equation 
      The new universal correlation is: 
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Fig. 1. The schematics structure of the three-layer feed forward neural network used in this study. 
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Fig. 2. Determining the optimum number of neurons. 

 

 
Fig. 3. Designed neural network structure. 
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where Pvpr is the reduced vapor pressure, which is equal to 
P/Pc, Tr = T/Tc, is the reduced temperature, and ω is acentric 
factor.  
 
Model II: An Accurate Substance-dependent 
Equation 
      In  addition  to  the  general   method,  a  new substance- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
dependent correlation is presented to predict saturated vapor 
pressure of refrigerants more accurate than other empirical 
models. The model is presented as follows: 
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where b1 = 0, b2 = -1, b3 = 0.1 and b4 = 1.9 are constant 
values for all refrigerants. a1 to a4 are constant substance-
dependent parameters which their values for each substance  

Table 2. Statistical Parameters of this Study Compared with Literature Models 
  

 AAD% MSE% 

Lee-Kesler 3.26 8.71 

Ambros-Walton 2.21 7.51 

Riedel 3.67 9.51 

Wagner 2.51 8.17 

Sanjari et al. 1.84 4.36 

Model I 1.52 3.03 

Model II 0.72 1.96 

ANN 0.25 0.39 
 
 

Table 3. Statistical Parameters of Considered Models for R14 
 

 AAD% MSE% 

Lee-Kesler 2.14 4.13 

Ambros-Walton 1.77 4.78 

Riedel 2.71 4.63 

Wagner 6.07 8.36 

Sanjari et al. 1.80 6.71 

Model I 0.94 3.07 

Model II 0.75 1.89 

ANN 0.21 0.32 
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Fig. 4. Deviation of all data for 28 refrigerants calculated by; (a) general model; (b) substance-dependent model; (c) ANN. 
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Fig. 5. AAD% against reduced temperature for all models. 

 

 
Fig. 6. AAD% of various methods in calculating vapor pressure as function of cumulative frequency. 
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are presented in Supplementary data file (see Table 2 in 
Supplementary data file). 
      All tuned coefficients of two proposed correlations have 
been determined by using Marquardt-Levenberg algorithm 
which minimizes the sum of the squared differences 
between the observed and predicted values of dependent 
variables. 
      The temperature and pressure ranges, critical 
temperatures, critical pressures, and acentric factors 
required to set up the correlations have been reported in 
Supplementary data file (see Table 3 in Supplementary data 
file). 
      The new presented ANN structure and two correlations 
are obtained from investigating of a large number of vapor 
pressure data (NIST Chemistry WebBook) [14] for 
refrigerants. 
 
RESULTS AND DISCUSSION 
 
      New predictive correlations are presented for vapor 
pressure calculation (Eqs. (16)-(18)) for general  model  and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Eq. (19) for substance-dependent model). Also we carried 
out calculations for all substances by using artificial neural 
network (ANN) approach. Vapor pressures for refrigerants 
from source data [14] have been calculated from these 
models and compared with five literature correlations. 
      The values of the vapor pressure, temperature, critical 
pressure, critical temperature, boiling point, and acentric 
factor, (for comparison with literature correlations) were 
taken from data bank [14]. 
      To compare the accuracy of three presented models, 
deviations (100 × {Psource data - Pcalculated}) of each data point 
for all refrigerants is presented in Figs. 4a-c. 
      In Table 1 (rename Table numbers throughout the 
paper), AAD% of vapor pressure calculated from the 
proposed and literature models for each refrigerant with 
respect to the values given by data bank are presented.  
AAD% can be calculated as follow: 
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Fig. 7. Deviation of all models vs. temperature for R-1234ze(Z). 
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It showed that all three presented models have more  
accurate correlations compared to the literature correlations 
for all types of refrigerants considered in this study. 
      Table 2 presents the statistical parameters including 
average absolute deviation (AAD%), and mean square error 
(MSE%) for literature correlations and three new proposed 
models. 
      Figure 5 shows the deviation of all models for all 
substances versus reduced temperature. Figure 6 shows the 
cumulative frequency of the proposed models and different 
corresponding correlations versus average absolute 
deviations (AAD%). It shows the accuracy of each 
considered models in calculation of vapor pressure for all 
refrigerants. As illustrated in Fig. 5, three new proposed 
models are more accurate than other five commonly used 
correlations in vapor pressure calculation. 
      As indicated in Fig. 6, designated ANN has been 
successfully calculated 97% of all data with AAD less than 
1. Model II, the second accurate model, and Model I, the 
third accurate model, have calculated 81% and 70% of data, 
respectively, with AAD of less than 1%. 
      Only 1.5% of calculations by Model I and 0.2% of 
values obtained by Model II were estimated with AAD% of 
more than 8%. Hence the superiority of this new correlation 
over the other literature models has been verified for all data 
existed in data bank. 
      To estimate the applicability of presented models for 
calculating vapor pressure of refrigerants, the statistical 
parameters of three proposed models and other mentioned 
correlations for 200 data points of R-14 [14] and 19 data of 
R-1234ze(Z) [26] are presented in Table 3 and Fig. 7. It 
should be noted that data points of R-14 and R-1234ze(Z) 
were not employed in regression analysis of the new 
proposed correlations. 
      The coefficients of Model II for R-14 are a1 = 79.836, a2 
= -9.822, a3 = -72.110, and a4 = 2.098 and for R-1234ze(Z) 
are a1 = 154.4081, a2 = 14.5079, a3 = 143.7219 and a4 = 
3.8208. 
      The results showed that Sanjari et al.,s equation is more 
accurate than literature correlations except this study three 
proposed models. ANN and Model II with lower deviation 
than considered correlations are best models with AAD% of 
0.25 for R-14 and 0.081 for R-1234ze(Z), respectively.  

 
 
CONCLUSIONS 
 
      For saturated vapor pressure of methane, ethane, 
propane and butane halogenated refrigerants, three 
predictive models including a general correlation, a 
substance-dependent correlation, and an artificial neural 
network (ANN) approach were recommended. These 
models were derived from NIST Chemistry WebBook. It is 
found that undesirable calculation deviations were obtained 
using Lee-Kesler and Riedel correlations. Sanjari et al.’s 
equation with constant parameters for each substance, 
generally gives good prediction than other previous models. 
New three predictive models were recommended to estimate 
vapor pressure of refrigerants more accurate than other 
commonly used correlations. To validate the proposed 
models, the vapor pressures of 27 refrigerants were 
examined and an overall AAD of 1.52% for the general 
equation (Model I), AAD of 0.72% for the substance-
dependent equation (Model II), and AAD of 0.25% for the 
artificial neural network (ANN) approach was achieved. 
Also, to estimate the applicability of the new models, 200 
data points of R14 and 19 data of R-1234ze(Z), which were 
not participate in regression analysis, were examined and 
the results showed again the superiority of all new presented 
models compared to  other previous correlations. 
 
REFERENCES 
 
[1] Rogdakis, E. D.; Lolos, P. A., Simple generalized 

vapour pressure- and boiling point correlation for 
refrigerants, Int. J. Refri. 2006, 29, 632-644, DOI: 
10.1016/j.ijrefrig.2005.09.013. 

[2] Soave, G., Equilibrium constants from a modified 
Redlich-Kwong equation of state, Chem. Eng. Sci. 
1972, 72, 1197-1203, DOI: 10.1016/0009-
2509(72)80096-4. 

[3] Figueira, F. L.; Lugo, L.; Olivera-Fuentes, C., 
Generalized parameters of the Stryjek-Vera and 
Gibbons–Laughton cohesion functions for use with 
cubic EOS of the van der Waals type, Fluid Phase 
Equilibria. 2007, 259, 105-115, DOI: 10.1016/ 
j.fluid.2007.04.012.  

[4] Forero, L. A.; Velásquez, J. A., A method to  estimate 



 

 

 

Empirical Correlations and an Artificial Neural Network Approach/Phys. Chem. Res., Vol. 5, No. 2, 281-292, June 2017. 

 291 

 
 

the Patel-Teja equation of state constants, J. Chem. 
Eng. Data 2010, 55, 5094-5100, DOI: 10.1021/ 
je100656d. 

[5] Mejbri, K.; Bellagi, A., Corresponding states 
correlation for the saturated vapor pressure of pure 
fluids. Thermochimica Acta 2005, 436, 140–149, 
doi:10.1016/j.tca.2005.06.040. 

[6] Antoine, C., Tension des vapeurs: nouvelle relation 
entre les tension et les temperatures, Comptes Rendus. 
1888, 107, 681-836. 

[7] Gomez-Nieto, M.; Thodos, G., A new vapour pressure 
equation and its application to normal alkanes, Ind. 
Eng. Chem. Fundam. 1977, 16, 254-259, DOI: 
10.1021/i160062a014. 

[8] Lee, B. I.; Kesler, M. G., A generalized 
thermodynamic correlation based on three-parameter 
corresponding states. AlChE J. 1975, 21, 510-527, 
DOI: 10.1002/aic.690210313. 

[9] Sivanandam, S. N.; Sumathi, S.; Deepa, S. N., 
Introduction to Neural Networks Using Matlab 6.0. 
McGraw-Hill Publishing, New Delhi, 2006. 

[10] Moghadasi, A. R.; Parvizian, F.; Hosseini, S. M.; 
Fazlali, A. R., A new approach for estimation of PVT 
properties of pure gases based on artificial neural 
network model, Braz. J. Chem. Eng. 2009, 26, 199-
206, DOI: 10.1590/S0104-66322009000100019. 

[11] Rohani, A. A.; Pazuki, G.; Najafabadi, H. A.; Seyfi, 
S.; Vossoughi, M., Comparison between the artificial 
neural network system and SAFT equation in 
obtaining vapor pressure and liquid density of pure 
alcohols, Exp. Sys. Appl. 2011, 38, 1738-1747, DOI: 
10.1016/j.eswa.2010.07.099. 

[12] Lazzús, J. A., Prediction of solid vapor pressures for 
organic and inorganic compounds using a neural 
network., Thermochimica Acta 2009, 489, 53-62, 
DOI: 10.1016/j.tca.2009.02.001. 

[13] Gandhidasan, P.; Mohandes, M. A., Predictions of 
vapor pressures of aqueous desiccants for cooling 
applications by using artificial neural networks, Appl. 
Therm. Eng. 2008, 28, 126-135, DOI: 10.1016/ 
j.applthermaleng.2007.03.034. 

[14] NIST Chemistry WebBook, NIST Standard Reference 
Database Number 69, National  Institute of  Standards  

 
 

and Technology, Gaithersburg MD, 2005, p. 20899, 
http://webbook.nist.gov. 

[15] Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P., The 
Properties of Gases and Liquids, fifth ed., McGraw-
Hill, 2001. 

[16] Gude, M.; Teja, A. S., Vapor-Liquid Critical 
Properties of Elements and Compounds. 4. Aliphatic 
Alkanols, J. Chem. Eng. Data 1995, 40, 1025-1036, 
DOI: 10.1021/je00021a001. 

[17] Tsonopoulos, C.; Ambrose, D., Vapor-liquid critical 
properties of elements and compounds. 3. Aromatic 
hydrocarbons, J. Chem. Eng. Data 1995, 40, 547-558, 
DOI: 10.1021/je00019a002. 

[18] Marsh, K. N.; Abramson, A.; Ambrose, D.; Morton, 
D. W.; Nikitin, E.; Tsonopoulos, C.; Young, C. L., 
Vapor-liquid critical properties of elements and 
compounds. 10. Organic compounds containing 
halogens, J. Chem. Eng. Data 2007, 52, 1509-1538, 
DOI: 10.1021/je700336g 

[19] Riedel, L., Kritischer koeffizient, dichte des 
gesättigten dampfes und verdampfungswärme. 
untersuchungen über eine erweiterung des theorems 
der übereinstimmenden zustände. Teil III., Chem. Ing. 
Tech. 1954, 26, 679-683, DOI: 10.1002/ 
cite.330261208. 

[20] Wagner, W., New vapour pressure measurements for 
argon and nitrogen and a new method for establishing 
rational vapour pressure equations, Cryogenics. 1973, 
13, 470-482, DOI: 10.1016/0011-2275(73)90003-9. 

[21] Forero, L. A.; Velásquez, J. A., Wagner liquid-vapour 
pressure equation constants from a simple 
methodology, J. Chem. Thermodynamics. 2011, 43, 
1235-1251, DOI: 10.1016/j.jct.2011.03.011. 

[22] Sanjari, E.; Honarmand, M.; Badihi, H. R.; Ghaheri, 
A., An accurate generalized model for predict vapor 
pressure of refrigerants, Int. J. Refrigeration. 2013, 
36, 1327-1332, DOI: 10.1016/j.ijrefrig.2013.01.007. 

[23] Artificial Neural Network, Wikipedia, The Free 
Encyclopedia: https://en.wikipedia.org/wiki/ 
Artificial_neural_network. 

[24] Sanjari, E.; Nemati-Lay, E., Estimation of natural gas 
compressibility factors using artificial neural network 
approach,  J.  Nat.  Gas. Sci. Eng.  2012,  9,  220-226, 



 

 

 

Meghdadi Isfahani et al./Phys. Chem. Res., Vol. 5, No. 2,  281-292, June 2017. 

 292 

 
 

 DOI: 10.1016/j.jngse.2012.07.002. 
[25] Eslamloueyan, R.; Khademi, M. H., Estimation of 

thermal conductivity of pure gases by using artificial 
neural networks, Int. J. Therm. Sci. 2009, 48, 1094-
1101, DOI: 10.1016/j.ijthermalsci.2008.08.013. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

[26] Higashi, Y.; Hayasaka, S.; Shirai, C.; Akasaka, R., 
Measurements of PρT properties, vapor pressures, 
saturated densities, and critical parameters for R 
1234ze(Z) and R 245fa, Int. J. Refri. 2015, 52, 100-
108. 


