APPENDICES

A. Wilson Model:

The Wilson model, consistent with the Flory Huggins relation, uses the concept of "local composition" and accounts for the differences in both molecular and intermolecular forces. The overall solution ($\Phi_i = V_{iL} / V_L$) is replaced by local-volume fractions $\overline{\Phi}_i$ given by Equation (1):

$$\overline{\Phi}_{i} = \frac{V_{iL} x_{i} \exp(-\lambda_{ii} / RT)}{\sum_{j=1}^{C} V_{jL} x_{j} \exp(-\lambda_{ij} / RT)}$$
(1)

where interaction energies $\lambda_{ij} = \lambda_{ji}$, but $\lambda_{ij} \neq \lambda_{ji}$.

For a binary system, the Wilson model for the excess Gibbs energy can be expressed as follows: \sim^{E}

$$\frac{G^{L}}{RT} = -x_1 \ln(x_1 + \Lambda_{12}x_2) - x_2 \ln(\Lambda_{21}x_1 + x_2)$$
(2)

where G^E is the Gibbs energy. Values of $\Lambda_{ij} < 1$ correspond to positive deviation from Raoult's law while values greater than 1 result in slightly negative deviations. An ideal solution is observed when $\Lambda_{ij} = 1$. The interaction parameters Λ_{ij} can be expressed as follows:

$$\Lambda_{12} = \frac{V_2^L}{V_1^L} \exp\left(\frac{-\Delta\lambda_{12}}{RT}\right)$$
(3)

$$\Lambda_{21} = \frac{V_1^L}{V_2^L} \exp\left(\frac{-\Delta\lambda_{21}}{RT}\right) \tag{4}$$

where $\Delta \lambda_{ij} = \lambda_{ij} - \lambda_{ji}$ are the binary parameters. It is known that λ_{ii} and λ_{ij} are temperature dependent and that V_{iL} / V_{jL} are dependent on temperature, but the variation is small compared to the effect of temperature on the exponential terms in Equations (3) and (4).

For a binary mixture, the activity coefficients γ_1 and γ_1 can be obtained from the following equations:

$$\ln \gamma_{1} = -\ln(x_{1} + \Lambda_{12}x_{2}) + x_{2} \left(\frac{\Lambda_{12}}{x_{1} + \Lambda_{12}x_{2}} - \frac{\Lambda_{21}}{\Lambda_{21}x_{1} + x_{2}} \right)$$
(5)

$$\ln \gamma_2 = -\ln(x_2 + \Lambda_{21}x_1) - x_1 \left(\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{\Lambda_{21}x_1 + x_2}\right)$$
(6)

When insufficient data are available to determine binary parameters from the best fit of activity coefficients, infinite dilution or single-point values can be used. At infinite dilution, the Wilson equation becomes:

$$\ln \gamma_1^{\infty} = 1 - \ln \Lambda_{12} - \Lambda_{21} \tag{7}$$

$$\ln \gamma_2^{\infty} = 1 - \ln \Lambda_{21} - \Lambda_{12} \tag{8}$$

B. UNIFAC Model

The UNIFAC model represents the activity coefficient as the sum of a combinatorial part (the contribution due to differences in the molecular size and shape of the molecules in the mixture) and a residual one (the contribution due to the molecular interactions or energy interactions).

$$\ln \gamma_i = \ln \gamma_i^{com} + \ln \gamma_i^{res} \tag{9}$$

The two contributions are determined by three parameters, namely, the group surface area parameter ®, the group volume contribution (Q), and the binary interaction parameter a_{mn} . The combinatorial part is obtained as follows:

$$\ln \gamma_i^{com} = \ln \frac{\Phi_i}{x_i} + \frac{z}{2} q_i \ln \frac{\theta_i}{\Phi_i} + \ell_i - \frac{\Phi_i}{x_i} \sum_{j=1}^{N_c} x_j \ell_j$$
(10)

$$\Phi_i = \frac{r_i x_i}{\sum_{i=1}^{N_c} r_i x_i}$$
(11)

$$\theta_i = \frac{q_i x_i}{\sum_{j=1}^{N_c} q_j x_j}$$
(12)

$$\ell_{i} = \frac{z}{2} (r_{i} - q_{i}) - r_{i} + 1$$
(13)

where z is the coordination number, generally set to be equal to 10. Φ_i and θ_i are the volume fraction and surface fraction of molecule i in the system, respectively. Two sets of structural parameters are introduced, one for the compound, r and q, and one for the molecular groups, R and Q. Both sets of structural parameters are related to the van der Waals volume and surface area of either a compound or a molecular group. The parameters r_i and q_i are calculated as the sum of the area parameters and volume of groups, as shown below:

$$r_{i} = \sum_{k=1}^{N_{g,j}} v_{k}^{(i)} R_{k}$$
(14)

$$q_{i} = \sum_{k=1}^{N_{g,j}} v_{k}^{(i)} Q_{k}$$
(15)

The residual part is obtained by the solution concept in groups:

$$\ln \gamma_i^{res} = \sum_{k=1}^{N_{g,j}} v_k^{(i)} \left[\ln \Gamma_k - \ln \Gamma_k^{(i)} \right]$$
(16)

where Γ_k is the activity coefficient of a molecular group, Γ_k^i is the residual activity coefficient of group k in a reference solution containing only molecules of type i, and ν refers to the number of a group per compound. The residual activity coefficients are obtained by Equation (17): Г

٦

$$\ln \Gamma_{k} = Q_{k} \left[1 - \ln \left(\sum_{m=1}^{N_{g}} \Theta_{m} \Psi_{mk} \right) - \sum_{m=1}^{N_{g}} \frac{\Theta_{m} \Psi_{km}}{\sum_{n=1}^{N_{g}} \Theta_{n} \Psi_{nm}} \right]$$
(17)

where Θ_m is the area-fraction of molecular group m and is calculated by Equation (18):

$$\Theta_m = \frac{Q_m X_m}{\sum_{n=1}^{N_g} Q_n X_n}$$
(18)

where X_m , the mole fraction of a molecular group, is calculated by Equation (19):

$$X_{m} = \frac{\sum_{i=1}^{N_{c}} v_{m}^{(i)} x_{i}}{\sum_{i=1}^{N_{c}} \sum_{j=1}^{N_{g}} v_{j}^{(i)} x_{i}}$$
(19)

where Ψ_{mn} are the energy interaction parameters between groups *m* and *n*, and are calculated by Equation (20):

$$\Psi_{nn} = \exp\left[-\frac{U_{nn} - U_{nn}}{RT}\right] = \exp\left[-\frac{a_{nn}}{RT}\right]$$
(20)

where U_{mn} is a measure of the interaction energy between groups m and n.

C. Deviations between the Experimental and Predicted Data in the *n*-Butane + Methanol System

Table A. MRD (Mean Relative Deviation) and BIAS (on x and y) Obtained in Fitting the Experimental VLE Data (*n*-butane + methanol) with PR, PC-SAFT, and SAFT-VR EoS [1]

The <i>n</i> -butane+ methanol system	PR				SAFT-VR				PC-SAFT			
T(K)	BIAS	BIAS	MRD	MRD	BIAS X	BIAS	MRD	MRD	BIAS	BIAS	MRD	MRD
	x	У	x	У		У	x	У	х	У	X	У
					(%)							
	(%)	(%)	(%)	(%)		(%)	(%)	(%)	(%)	(%)	(%)	(%)
323.22 [1]	-7.4	0.5	7.6	0.6	-6.9	-0.1	10.5	0.3	-1.1	-0.2	5.6	1.0
373.19 [1]	-0.1	0.9	4.1	1.6	-0.5	-0.5	5.7	1.8	0.1	-1.8	2.2	2.2
403.13 [1]	-0.1	-0.5	3.6	2.5	-3.2	-1.3	5.8	2.7	0.0	-1.5	4.0	2.2
423.09 [1]	-0.7	-2.6	9.3	4.8	-8.0	-1.8	11.7	3.3	8.4	-0.9	10.6	3.3
Literature data												
273.15 [28] 5.3	-1.1	17.1	30.	-3.2	1.3	5.8	2.7	-4.8	1.7	28.4	2.6
323.15 [28] -4.1	-1.7	8.8	1.7	-12.0	-2.6	16.5	2.6	2.0	2.1	7.5	2.1
373.15 [28] -0.8	-3.4	2.6	3.4	-4.9	-3.1	8.7	3.8	-1.1	1.9	2.9	2.0

Table B. AAE, AAD (%), and BIAS (%) between the Experimental and predicted (PR-MHV2-UNIFAC and GC-PR-CPA) Data in the *n*-Butane + Methanol Mixture

System	T(K)	PR-MHV2-UNI	FAC		GC-PR-CPA				
		AAE (mole	AAD (%)	BIAS (%)	AAE (mole	AAD (%)	BIAS (%)		
		fraction)			fraction)				
<i>n</i> -butane +	323.2[29]	0.01	5.4	-4.2	0.01	13	5.1		
	373.2[29]	0.02	9.1	-8.4	0.02	11	-4.2		
methanol	403.1[29]	0.02	8.3	-5.8	0.02	7.4	1.6		