APPENDICES

A. Wilson Model:

The Wilson model, consistent with the Flory Huggins relation, uses the concept of "local composition" and accounts for the differences in both molecular and intermolecular forces. The overall solution ($\Phi_{i}=V_{i L} / V_{L}$) is replaced by local-volume fractions $\bar{\Phi}_{i}$ given by Equation (1):
$\bar{\Phi}_{i}=\frac{V_{i L} x_{i} \exp \left(-\lambda_{i i} / R T\right)}{\sum_{j=1}^{C} V_{j L} x_{j} \exp \left(-\lambda_{i j} / R T\right)}$
where interaction energies $\lambda_{i j}=\lambda_{j i}$, but $\lambda_{i j} \neq \lambda_{j i}$.
For a binary system, the Wilson model for the excess Gibbs energy can be expressed as follows:
$\frac{G^{E}}{R T}=-x_{1} \ln \left(x_{1}+\Lambda_{12} x_{2}\right)-x_{2} \ln \left(\Lambda_{21} x_{1}+x_{2}\right)$
where G^{E} is the Gibbs energy. Values of $\Lambda_{i j}<1$ correspond to positive deviation from Raoult's law while values greater than 1 result in slightly negative deviations. An ideal solution is observed when $\Lambda_{i j}=1$. The interaction parameters $\Lambda_{i j}$ can be expressed as follows:

$$
\begin{align*}
& \Lambda_{12}=\frac{V_{2}^{L}}{V_{1}^{L}} \exp \left(\frac{-\Delta \lambda_{12}}{R T}\right) \tag{3}\\
& \Lambda_{21}=\frac{V_{1}^{L}}{V_{2}^{L}} \exp \left(\frac{-\Delta \lambda_{21}}{R T}\right) \tag{4}
\end{align*}
$$

where $\Delta \lambda_{i j}=\lambda_{i j}-\lambda_{j i}$ are the binary parameters. It is known that $\lambda_{i i}$ and $\lambda_{i j}$ are temperature dependent and that $V_{i L} / V_{j L}$ are dependent on temperature, but the variation is small compared to the effect of temperature on the exponential terms in Equations (3) and (4).
For a binary mixture, the activity coefficients γ_{1} and γ_{1} can be obtained from the following equations:

$$
\begin{align*}
& \ln \gamma_{1}=-\ln \left(x_{1}+\Lambda_{12} x_{2}\right)+x_{2}\left(\frac{\Lambda_{12}}{x_{1}+\Lambda_{12} x_{2}}-\frac{\Lambda_{21}}{\Lambda_{21} x_{1}+x_{2}}\right) \tag{5}\\
& \ln \gamma_{2}=-\ln \left(x_{2}+\Lambda_{21} x_{1}\right)-x_{1}\left(\frac{\Lambda_{12}}{x_{1}+\Lambda_{12} x_{2}}-\frac{\Lambda_{21}}{\Lambda_{21} x_{1}+x_{2}}\right) \tag{6}
\end{align*}
$$

When insufficient data are available to determine binary parameters from the best fit of activity coefficients, infinite dilution or single-point values can be used. At infinite dilution, the Wilson equation becomes:

$$
\begin{align*}
& \ln \gamma_{1}^{\infty}=1-\ln \Lambda_{12}-\Lambda_{21} \tag{7}\\
& \ln \gamma_{2}^{\infty}=1-\ln \Lambda_{21}-\Lambda_{12} \tag{8}
\end{align*}
$$

B. UNIFAC Model

The UNIFAC model represents the activity coefficient as the sum of a combinatorial part (the contribution due to differences in the molecular size and shape of the molecules in the mixture) and a residual one (the contribution due to the molecular interactions or energy interactions).
$\ln \gamma_{i}=\ln \gamma_{i}^{\text {com }}+\ln \gamma_{i}^{\text {res }}$
The two contributions are determined by three parameters, namely, the group surface area parameter ${ }^{\circledR}$, the group volume contribution (Q), and the binary interaction parameter $a_{m n}$. The combinatorial part is obtained as follows:
$\ln \gamma_{i}^{c o m}=\ln \frac{\Phi_{i}}{x_{i}}+\frac{z}{2} q_{i} \ln \frac{\theta_{i}}{\Phi_{i}}+\ell_{i}-\frac{\Phi_{i}}{x_{i}} \sum_{j=1}^{N_{c}} x_{j} \ell_{j}$
$\Phi_{i}=\frac{r_{i} x_{i}}{\sum_{j=1}^{N_{c}} r_{j} x_{j}}$
$\theta_{i}=\frac{q_{i} x_{i}}{\sum_{j=1}^{N_{c}} q_{j} x_{j}}$
$\ell_{i}=\frac{z}{2}\left(r_{i}-q_{i}\right)-r_{i}+1$
where z is the coordination number, generally set to be equal to $10 . \Phi_{i}$ and θ_{i} are the volume fraction and surface fraction of molecule i in the system, respectively. Two sets of structural parameters are introduced, one for the compound, r and q, and one for the molecular groups, R and Q. Both sets of structural parameters are related to the van der Waals volume and surface area of either a compound or a molecular group. The parameters r_{i} and q_{i} are calculated as the sum of the area parameters and volume of groups, as shown below:
$r_{i}=\sum_{k=1}^{N_{g, j}} v_{k}^{(i)} R_{k}$
$q_{i}=\sum_{k=1}^{N_{g, j}} v_{k}^{(i)} Q_{k}$
The residual part is obtained by the solution concept in groups:
$\ln \gamma_{i}^{r e s}=\sum_{k=1}^{N_{g, j}} v_{k}^{(i)}\left[\ln \Gamma_{k}-\ln \Gamma_{k}^{(i)}\right]$
where Γ_{k} is the activity coefficient of a molecular group, Γ_{k}^{i} is the residual activity coefficient of group k in a reference solution containing only molecules of type \boldsymbol{i}, and \boldsymbol{v} refers to the number of a group per compound. The residual activity coefficients are obtained by Equation (17):
$\ln \Gamma_{k}=Q_{k}\left[1-\ln \left(\sum_{m=1}^{N_{g}} \Theta_{m} \Psi_{m k}\right)-\sum_{m=1}^{N_{g}} \frac{\Theta_{m} \Psi_{k m}}{\sum_{n=1}^{N_{g}} \Theta_{n} \Psi_{n m}}\right]$
where Θ_{m} is the area-fraction of molecular group m and is calculated by Equation (18):

$$
\begin{equation*}
\Theta_{m}=\frac{Q_{m} X_{m}}{\sum_{n=1}^{N_{g}} Q_{n} X_{n}} \tag{18}
\end{equation*}
$$

where X_{m}, the mole fraction of a molecular group, is calculated by Equation (19):

$$
\begin{equation*}
X_{m}=\frac{\sum_{i=1}^{N_{G}} v_{m}^{(i)} x_{i}}{\sum_{i=1}^{N_{c}} \sum_{j=1}^{N_{g}} v_{j}^{(i)} x_{i}} \tag{19}
\end{equation*}
$$

where $\Psi_{m n}$ are the energy interaction parameters between groups m and n, and are calculated by Equation (20):

$$
\begin{equation*}
\Psi_{m n}=\exp \left[-\frac{U_{m n}-U_{n n}}{R T}\right]=\exp \left[-\frac{a_{m n}}{R T}\right] \tag{20}
\end{equation*}
$$

where $U_{m n}$ is a measure of the interaction energy between groups m and n.

C. Deviations between the Experimental and Predicted Data in the n-Butane + Methanol System

Table A. MRD (Mean Relative Deviation) and BIAS (on x and y) Obtained in Fitting the Experimental VLE Data (n-butane + methanol) with PR, PC-SAFT, and SAFT-VR EoS [1]

The n-butane+ methanol system	PR				SAFT-VR				PC-SAFT			
T(K)	$\begin{aligned} & \text { BIAS } \\ & x \\ & (\%) \end{aligned}$	BIAS y (\%)	MRD x (\%)	MRD y (\%)	BIAS x (\%)	BIAS y (\%)	MRD x (\%)	MRD y (\%)	BIAS x (\%)	BIAS y (\%)	MRD x (\%)	MRD y (\%)
323.22 [1]	-7.4	0.5	7.6	0.6	-6.9	-0.1	10.5	0.3	-1.1	-0.2	5.6	1.0
373.19 [1]	-0.1	0.9	4.1	1.6	-0.5	-0.5	5.7	1.8	0.1	-1.8	2.2	2.2
403.13 [1]	-0.1	-0.5	3.6	2.5	-3.2	-1.3	5.8	2.7	0.0	-1.5	4.0	2.2
423.09 [1]	-0.7	-2.6	9.3	4.8	-8.0	-1.8	11.7	3.3	8.4	-0.9	10.6	3.3
Literature	e data											
273.15 [28]] 5.3	-1.1	17.1	30.	-3.2	1.3	5.8	2.7	-4.8	1.7	28.4	2.6
323.15 [28]] -4.1	-1.7	8.8	1.7	-12.0	-2.6	16.5	2.6	2.0	2.1	7.5	2.1
373.15 [28]] -0.8	-3.4	2.6	3.4	-4.9	-3.1	8.7	3.8	-1.1	1.9	2.9	2.0

Table B. AAE, AAD (\%), and BIAS (\%)between the Experimental and predicted (PR-MHV2-UNIFAC and GC-PR-CPA) Data in the n Butane + Methanol Mixture

System	T(K)	PR-MHV2-UNIFAC			GC-PR-CPA		
		AAE (mole fraction)	AAD (\%)	BIAS (\%)	AAE (mole fraction)	AAD (\%)	BIAS (\%)
n-butane +	323.2[29]	0.01	5.4	-4.2	0.01	13	5.1
	373.2[29]	0.02	9.1	-8.4	0.02	11	-4.2
methanol	403.1[29]	0.02	8.3	-5.8	0.02	7.4	1.6

