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The density and polarization profiles of the dipolar hard ellipsoids confined between hard walls are studied using the density functional
theory (DFT). The Hyper-Netted Chain (HNC) approximation is used to write excess grand potential of the system with respect to the bulk
value. The number density is expanded up to zero and first order in polarization to find the results. For the zero order in polarization, the
coupled integral equations for the directional densities are obtained. Then, for the first order in polarization the coupled integral equations
for the directional densities and polarization profiles are obtained. To simplify the calculations we use restricted orientation model (ROM)
for the orientation of ellipsoids to find the density and polarization profiles. We also apply an electric field and write an expression for the

excess grand potential of the system and obtain the coupled integral equations for the density and polarization profiles again. Finally, we

calculate the density and polarization profiles for different cases and compare the obtained results.
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INTRODUCTION

Due to the equilibrium properties of homogeneous and
inhomogeneous dipolar fluids especially with dipole-dipole
interactions, these fluids have recently attracted much
attention [1-9]. A dipolar hard sphere model is a system of
hard sphere with embedded point dipoles at the center and it
has been found to be a simple but still useful model to study
the equilibrium properties of this kind of fluids either
theoretically or by computer simulation techniques. These
fluids with polar molecules mainly represent two important
physical features, viz. the short-ranged repulsions and the
long-ranged orientation dependent electrostatic interactions.
Recent studies have shown that these interactions often
show unexpected behavior [10]. The simplest example of an
inhomogeneous dipolar fluid is the interface between a
dipolar hard sphere fluid and a neutral hard wall [11].

Density functional theory (DFT) has been proven to be a
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powerful tool in the study of thermodynamic and structural

properties of bulk and non-uniform phase of molecular fluid
and liquid crystals particularly in two and three dimensions
[6,7,12]. DFTs study the
thermodynamics of homogeneous molecular fluids and

have also been used to

structural properties of inhomogeneous molecular fluids,
such as hard ellipses [12], hard circular cylinders, and hard
Gaussian overlap fluid [2,13] confined between planar
walls. Moradi and Rickayzen [14] used a density functional
chain (HNC)
approximation, to obtain number density and polarization of

formalism, based on the hyper-netted
dipolar hard spheres between hard walls in the presence of a
weak electric field.

Osipov et al. [15] found that the behavior of dipole-
dipole interaction could be treated by separating the direct
correlation function (DCF) for the fluid into short and long
range parts. They investigated the formal problems of
constructing a density functional theory of dipolar fluids and
proposed an explanation for the failure of all existing
density-functional theories to describe the behavior of
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strongly dipolar fluids as observed in computer simulations.

Cheung and Schmid [16] studied a system of soft
ellipsoidal molecules confined between two planner walls
using classical density functional theory. Both the isotropic
and nematic phases were considered. They evaluated the
excess free energy using two different Ansa’tze and the
intermolecular interaction which was incorporated using
two different DCFs for the fluids and the calculated density,
and finally they compared the order parameters to the
simulation results for the same system. Varga et al. [17]
used a density functional approach to describe the
orientational ordering of nonpolar and dipolar Gay-Berne
fluids. Moradi et al. [18] obtained the interaction forces
between nano-circular particles suspended in a hard-ellipse
fluid. Moradi and Avazpour [2] have studied the density
profiles of a hard Gaussian overlap (HGO) fluid confined in
between hard walls using the density functional theory.
Here, we extend this system to a hard ellipsoidal fluid with
dipole-dipole interaction. This kind of systems has not been
studied very much; so because of its importance, we use the
same density functional theory, HNC approximation, to find
the density and polarization profiles of a dipolar hard
ellipsoidal fluid confined between two parallel hard walls.
Then, we examine the effect of external electric field on the
density and polarization profiles.

This article is organized as follows: In Sec. 2 we
describe excess grand potential using the density functional
theory of molecular fluids confined between planar walls,
and obtain the direct correlation function (DCF) for dipolar
hard ellipsoidal molecules. In Sec. 3 we calculate the
density and polarization profiles of these molecules. In Sec.
4 we obtain and discuss the results. Finally, in Sec 5 we
present the conclusion.

THEORY

Grand Potential and Density Number

For a model fluid containing hard ellipsoidal molecules
carrying electric dipole moment at the center and in the
presence of an external potential J/ (T, ), the excess grand
potential with respect to its bulk is a unique functional of
number density. Up to second order in density and using
HNC approximation the excess grand potential is given as

[2,14] :

BAQ[p]=]d fdwp(f,m)[ln@q}jd Fdop (7,0 ., (F,o)
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where ¢ ( F]z’a)l’wz)is the DCF for homogeneous molecular
fluid, o, is the bulk density, B :% , o =0 ¢ denotes
7’ CEe
B
the orientation of ith molecule and p(f,a;)is the number

density at point 7  with generally molecular
orientation =6,¢ , 4 o, 18 the total solid angle available

to the molecules. We approximate the number density as
p(r, )= p,(r,w)+op(F, »), @)

where p (7,w)is the number density in the absence of

dipole-dipole interaction. Due to the symmetry of spherical
molecules, the electric dipole moment located in the center
of these molecules can lie freely in any directions and there
are no preferred directions for them. However, we assume
the dipole moments in ellipsoids are aligned in direction of
major axis and because of the dominance of short range
interaction, they cannot rotate fieely. For the first order
approximation, we assume there is a linear relationship
between density and local polarization profiles. At first, we
continue calculation without considering the second term in
above Eq. (2).

In a dipolar hard ellipsoidal fluid, the pair interaction

potential is given by the dipole-dipole interaction
udd(flz,a)”a)z) plus the hard ellipsoidal pair potential

U e (7‘1276017602)'

u (VIZ,COI,COZ) =Uy (rIZ’a)I’a)Z)-{—uHE (rlz’a)l’a)z) (3)

Where Uy (Zz’wl’a)z) and Uy (flz’a)l’a)z) 1S given by [1]
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where ; _ T 1S a unit vector in the direction of the

7|

vector joining the center of two particles,o-(ﬁ,a;] ,602) is the

closest approach distance of ellipsoids, m is the magnitude

of dipole moment and s, is a unit vector along the dipole

moment of ellipsoids and is given by:
m, =sin6, cosg, i +sin6, singo,.f +cos¢9,.l€ (6)

and

Up :\/(X

According to mean spherical approximation (MSA), we can
define DCF for dipole-dipole interaction as [19,20]:

X))+, =)+ (2, -z, 7

Cdd (17]2,60],602) = _ﬁudd (F]z’a)])a)z)

®)
Therefore, we have

C (712,601,602) =Chy (}7]27a)]7a)2)_ﬂudd (ﬁzaa)wa)z)

)

Since each molecule can be aligned in all directions, to
simplify the problem we apply the restricted orientation
model (ROM) and choose N available directions for each
molecule; in this case the total solid angle wcan be written

as [2]:

N
=|dw= % Aw, | NAw
a)T J a=1 (10)

For the density component within a particular direction and

corresponding sector, ,, (7) We can write:
a

[ dop(7.0)=p,(F)
o in o (11)

In the homogeneous case for any position 7 we have:

jda)p(f,a))=pb =Np,(r) (12)

By inserting Eq. (9) into Eq. (1), the dipolar contribution to

the excess grand potential can be obtained as:

5 fotee-3)
x0(r, - )—{ [ Lsin6, COS(pIJ (y ~Vising sm(plj
12 rIZ
+[zz —Z cos@lj][(x2 — sin6, COS(pszr(yZ —Vy
2 U o
Jr(ﬁcosﬁzj]f[cosﬁI cos 6, +sinf sinb, cos(@ -, )1}

U
Now we consider a system of dipolar hard ellipsoids
confined between two parallel hard walls and choose the z-
axis normal to the walls. The excess grand potential per unit

/mgwbﬂﬁwﬂfggfﬁﬁﬁdqd@(

sin 6, sin (pzj

(13)

area with respect to its bulk value in the presence of dipole-
dipole interaction can be written as:

N 1
,BAQA =YJdz, pa(z])(hM -+ pY[dz pa(zl)V(zl,wa) —5 Z/:}fdkldkzcap(zl—zz)
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) Ty Ty
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r]z 12 12
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where
Cop (Zl _Zz) = _dezd.)’zca,/f (Flzia)laﬁwz/j)

And indices a, f show directions of dipolar hard ellipsoids.
If we minimize Eq. (14) with respect to the density p, (z;),
the coupled integral equations of directional density profiles
can be obtained as:
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In the second step, we use the density profile, Eq. (2),
considering the second term, 5p(f,a)). Because each

molecule has a dipole moment which may be aligned in any
direction, therefore there is a local polarization P () which

can be defined as:

13(;7)=_[dwrﬁp(f,w)=2’7’apa(f) (16)

The expression Sp(¥,w) can be expanded in terms of the

Legendre polynomials, P,(@), as [2]:

8(F.0) = Y (P, (0) (17)

fluid
cylindrically symmetric about the z-axis and the DCF which

Since the confined dipolar hard ellipsoidal is

has been used here is assumed to be a function of the first-
order Legendre polynomial, only the term containing a,

contributes in Eq. (17). So, we can write [14]:

(18)

where p (7,0)is the number density in the absence of

dipole-dipole interaction and the second term is the
of the first
Here, if we define p,(7,0) = p(7,») and substitute Eq. (18)

contribution order in polarization.

in Eq. (1) after some mathematical manipulation, the excess
grand potential is given by:
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In the following, by using some approximations similar to
those suggested in reference [14], the entropy term, the first
term in above expression, can be written as:

Tl

0)

} = _Udr'da)p (]npl[p(r‘,(u)]—l)

[at0] 71"
= jjd‘

Again, we consider a system of dipolar hard ellipsoids
confined between two parallel hard walls and using above
equation, the excess grand potential per unit area is written
as:

B(2)4, (
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where 4, and B, 4 are given by:

A, =sinf, cosep, +sinb, sing, +cos6,

_ﬁ{xz 1
"y

{22 {2 %]H“B@ st ind it s .~}
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If we minimize the excess grand potential per unit area with
respect to directional density p_ (Z ]) and polarization, the

equilibrium density and polarization satisfy the coupled
integral equations below:
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F (z))=mA,p,(z)F (2.0, +Z[deCaﬂ Zz){pﬂ(zz)—%.;.%(zzq
Sl b B0 M{pﬂ( - e )}

24)

Direct Correlation Function of Hard Ellipsoids

The DCF for hard ellipsoids, required for the above
equations, has been calculated by Allen et al. [21]. They
used Monte Carlo simulation to find the DCF of hard
ellipsoids and compared the results with Marko’s [22],
which were in a reasonable agreement. Here, we use the
improved Pynn-Wulf [23,24] expression for the DCF of
hard ellipsoids proposed by Marko:

C(flbwl’wz):CPY [ ‘FI_FZ‘ ]I:I+apz(a3"a32):| (25)

o(n,w,0,
where Pz(u):(3y2_1)/2and a 1is obtained by the same

procedure as proposed by Marko, Cpy is Percus- Yevick’s
DCF for hard spheres [25],5(;5,@],(02) is the closest

approach of hard ellipsoids. The modified closest approach
introduced by Rickayzen [26] is given by:

G(ﬁ’wl,wz):%[lix(az,@,)z+(r L) =27 (700 (7, ) (6.6,
-4 (a),,a)z)
(oY ~ (i, |
N |:( |260|) (lzazz)}]im
1- 1 (&.0,)
(26)
where:
_asht L, (27)
a’+b’ (a+b)’

Parameters 2a and 2b denote the lengths of major and minor
axis of the ellipsoids. In the following, we assume 2b is a
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unit length. The mentioned DCF depends on the orientation
of the molecules and in our calculation this function is used
to solve the coupled integral equations and find the density
and polarization profiles.

CALCULATION OF THE DENSITY AND

POLARIZATION PROFILES

Now, we use Eq. (15) to find the density profile and
Egs. (23) and (24) to find density and polarization profiles.
In these cases, the density and polarization profiles are only
functions of z variable; the number density and polarization
have nonzero value in between the walls and zero
everywhere. Also, here it is assumed that the dipole
moments are aligned in direction of major axis of ellipsoids.
We consider the restricted orientation model (ROM) and
assume the center of molecules can move between the walls
and these molecules are aligned only in six particular
directions +x, £y and £z, where the notations £1, +2, £3 are

used here, respectively. By applying the required
symmetries, it can be written:
pl(z)sz(Z)’ pfl(z)=p72(z)’ pi(z)#ps(2)
P:)=Pa), R()-P) 8)
en(2)=Cp(2)

z)=C (Z) Cyp(z)= sz(z) Cy(2)=Cy(2)

(29)

In Fig. 1, the geometry of dipolar hard ellipsoids to show
their dipole moments and the closest approach and the
confined ellipsoids in ROM model are presented.

At first, we obtain the integral equations of density

profiles p (z):p.(2)sps(2)>p5(2) from Eq. (15) as:

pi(e)= ezt [ 4210, (2, -2+ €z =2, oy (22)+ £ (22) - 22
+7(h_[ dZZC”(Z,722)[p3(22)+p73(Zz)*%]}fﬁmzjdxzjdyz:h_z[:)dzz
<01, - )m“jﬁf”z+3("'"‘;)f;“’yz)m(p.(zz)—p,mzz))
7ﬁm‘_[dx2jdv j dz %(pz(zz)—piz(zz))]}

(30)
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Fig. 1. a) Geometry of dipolar hard ellipsoids and their closest approach. b) Schematic representation of the
dipolar hard ellipsoids confined between two hard walls, ROM model.
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wherep](z),pil (Z)’Ps(z)’ andpiz(z) represent  density
profiles of molecules along +x, -x, +z, and -z directions,
respectively.

In the next step, we use Eq. (23) for our confined fluid
to find the integral equations for the density profiles as
follow:
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and we obtain the polarization profiles from Eq. (24) as:
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By solving the above equations and applying the

boundary condition, we can obtain density and polarization
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profiles of confined dipolar hard ellipsoids. These boundary
conditions depend on the orientation of the molecules, so we
can write the number density of molecules parallel to the

walls, py, and the molecules perpendicular to the walls, p. ,
as:

(42)

Since these molecules are confined between two parallel
hard walls, the density profiles are zero outside the walls
and the total density is the sum of directional densities, so
we have only parallel and perpendicular densities and we

can write [2]:
Proa (Z)=§lpa(2)=a‘(2)+m(2)

(43)

where

p(z)=2p(2)+2p,(2)
(44)

p(z)=p(z)+pa(z)

As explained, we can obtain the number density and
polarization profiles by using boundary conditions, Eq. (42),
and the DCF for the fluid that was introduced in previous
section.

The Effect of External Electric Field

If the molecules are inserted in an electric field, E(f)’

the following term is added to the excess grand potential:
~PIdiE (F)P(F) (45)

Using Eq. (16) we can write Eq. (45) as below:
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Fig. 2. The density profiles of molecules parallel to the walls for k=2.2, p,” = 0.239 and h* = 8. The solid
curve is calculated for dipolar hard ellipsoids for zero order and dots are calculated for the first order
in polarization.
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Fig. 3. As Fig. 2 but for the density profiles of molecules perpendicular to the walls.
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Fig. 4. As Fig. 2 but for total number density of molecules.
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Fig. 5. The density profiles of molecules parallel to the walls fork=2.2, p,” =0.239 and h* = 15.
The solid curve is calculated for dipolar hard ellipsoid for zero order, and dots are calculated
for the first order in polarization and dashed are in the presence of electric field.
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Fig. 6. As Fig. 5 but for the density profiles of molecules perpendicular to the walls.
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Fig. 7. As Fig. 5 but for the total number density profiles of molecules.
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Fig. 8. The perpendicular polarization of molecules fork =2.2., p, =0.239 and h* =8. Solid curve is
calculated for dipolar hard ellipsoidal fluid in the absence of electric field and dots are calculated
in the presence of electric field.
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Fig. 9. As Fig. 8 but for h* = 15.

163



Moradi & Binaei Ghotbabadi/Phys. Chem. Res., Vol. 5, No. 1, 153-166, March 2017.

—ﬂm;]’dFEa(F)pa(F)cos@a (46)

If we assume that the electric field is along the z axis,
perpendicular to the walls, the integral equations (36) and
(37) are changed and the terms -fmE, +and fmE, are added

to their right hand side, respectively. E, is the magnitude of
electric field.

RESULTS AND DISCUSSION

The obtained
numerically using the ROM model with N = 6 to obtain the

integral equations could be solved
density and polarization profiles of a dipolar hard ellipsoidal
As
described in section 2.2, the DCF of a homogeneous hard

fluid confined between two parallel hard walls.

ellipsoidal fluid is obtained using Eq. (25). In our
calculations, these molecules can only be aligned in 6
directions. It is assumed that the major axes of the
molecules are parallel or perpendicular to the walls. We
obtained the density and polarization profiles for two
different values of the reduced wall separation. At first, we
solved the coupled integral Eq. (30) to (33) numerically to
obtain the density profiles. The obtained reduced number
densities of the molecules parallel and perpendicular to the
walls are plotted in Figs. (2) and (3), the total density
profile of the molecules is shown in Fig. (4). These densities
are calculated for elongation k = 2.2, reduced bulk density
pp* = 0.239 and reduced separation of the walls h* = h/2b =
8. In these figures, the density profiles are also compared
with the density profiles obtained by the first order
approximation in polarization, Eqs. (34)-(37). When the
major axes of the molecules are perpendicular to the walls,
there are relatively large discrepancies at maximum and
minimum of the density profiles while for the molecules
parallel to the walls the differences are small. As clearly
seen in these figures, the existence of higher peaks in the
density oscillation is due to considering first order
approximation in polarization. Then, by using Egs. (34)-
(41), we obtained the number density and polarization
profiles of this system. Similar to Figs. (2)-(4), in Figs. (5),
(6) and (7) the number density profiles are plotted as a
function of z* = z/2b for k = 2.2, py* = 0.239 and h* = 15.
As seen in these figures, for the density profiles calculated
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from the first order in polarization, there are some shifts in
the density curves compared to the case of zero order. When
the major axes of the molecules are perpendicular to the
walls, there is also a shift in the density in vertical direction
while for the molecules parallel to the walls these
differences are small. In these figures, the density profiles of
dipolar hard ellipsoidal fluid in the presence of electric field
are also shown. The values chosen for the reduced dipole
moment and the reduced electric field are given by:

o Bm’

3
_ »_Ame,0'E,
Y EN

0

E 0.4

m =0.5,

" (47)
In this case, the calculated density profiles are plotted in
Figs. (5)-(7) and the polarization profiles are shown in Figs.
(8) and (9) for two reduce separations of the walls. In these
figures the polarization profiles of dipolar hard ellipsoidal
fluid in the presence and absence of electric field are
compared.

According to the equation gp :_G(ﬂQ%V [27] for our

system, we can write

__9(p)

P =

(48)

where £, is the distance between the hard walls and P, is

the partial pressure of the ellipsoids which make angle 6,
with respect to z-axis. Inserting Eq. (14) into Eq. (48) and
after some mathematics, the pressure at the wall can be
obtained as:

PPN = PEL, ) =<p. > )

In this equation <p,, > is the average number density of the
hard ellipsoids in all directions at the hard wall. Eq. (49) is
satisfied by any fluid at contact with a hard surface [28]. As
our calculation shows, we can obtain the partial reduced
pressure from the directional densities of molecules at the
wall p,” as:

BP,(h)=py (h) (50)



Density and Polarization Profiles of Dipolar Hard Ellipsoids Confined/Phys. Chem. Res., Vol. 5, No. 1, 153-166, March 2017.

Table 1. The Densities and Pressures of Dipolar Hard Ellipsoidal Fluid at the Hard Wall

h'=h/2b P pL <py> BP
8 0.75886 0.10232 0.43059 0.43059
15 0.67267 0.14739 0.41003 0.41003

In Table 1, the calculated pressures and densities of dipolar
hard ellipsoidal fluid at hard wall for two different
separations of the walls are shown.

The density and polarization profiles of hard dipolar fluid
confined between hard walls have been reported in
reference [14]. In that article, it was shown that the spheres
are located near the hard wall as a layer and the maximum
of the profiles are located in the distance bigger than the
diameter of sphere from the wall. About the dipolar hard
ellipsoids, in ROM model, for the ellipsoids parallel to the
wall, the maximum of the density profiles is located at the
3b distance from the actual wall and for the ellipsoids
perpendicular to the wall, the maximum of the density
profile is located at 3a distance from the wall. These
locations are definitely affected by each other, because the
parallel and perpendicular ellipsoids are existed together. .

CONCLUSIONS

The HNC density functional theory is used to consider
dipolar hard ellipsoids confined between two parallel hard
walls. At the first step, the excess grand potential with
respect to its bulk as a unique functional of density was
introduced. The DCF of homogeneous dipolar hard
ellipsoidal fluid is the main required input. Then, we used
two approximations for the density, zero and first order in
polarization, to find the excess grand potential. The
minimization of the excess grand potential with respect to
the density and polarization gave us some coupled integral
equations to obtain the number density and polarization
profiles. We also used ROM model to find the density and
polarization profiles between two parallel hard walls. We
obtained density and polarization profiles for two different
wall separations. The results showed that for the zero and
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first order in polarization, the location of maximums and
minimums of the density profiles are not changed but their
amounts become bigger in the case of first order of
polarization. Finally, when we applied the electric field, the
location and the amount of the peaks of extremums, with
respect to the absence of electric field, are not changed very
much but the polarization profiles perpendicular to the walls
are changed and become larger in the presence of electric
field.
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