Crystal Chemistry of Immobilization of tetravalent Ce and Se in ceramic matrix of sodium zirconium phosphates

Document Type : Regular Article

Authors

1 Department of Chemistry Dr. H. S. Gour Central University, Sagar

2 department of chemistry Dr. H. S. Gour University

3 Department of chemistry Dr. H. S. Gour University

Abstract

The safe and effective management of radioactive waste has been given utmost importance from the very inception of nuclear industry in India and it covers the entire range of activities from handling, treatment, conditioning, transport, storage and finally disposal. Radioactive waste is generated at various stages of the nuclear fuel cycle, which includes the mining and milling of uranium ore, fuel fabrication, reactor operation and spent fuel reprocessing Sodium zirconium phosphate (here after NZP) is a typical host material capable of converting the intermediate level waste resulting from light water reactor (LWR) fuel reprocessing in to a single-phase material with good stability, high integrity and long durability. The crystal chemistry of NaZr1.9Ce0.1P3O12 and NaZr1.9Se0.1P3O12 phases has been investigated using general structure analysis system programming. The Se/CeNZP phases crystallize in the space group R-3c and Z = 6. Powder diffraction data have been subjected to rietveld refinement to arrive at a satisfactory structural convergence of R-factors. The PO4 stretching and bending vibrations in the infrared (IR) region have been assigned. SEM and EDAX analysis provide evidence of Ce and Se in the matrix.

Graphical Abstract

Crystal Chemistry of Immobilization of tetravalent Ce and Se in ceramic matrix of sodium zirconium phosphates

Keywords

Main Subjects


[1] G. Roth, S. Weisenburger, Nucl. Eng. Des. 202 (2000) 197.
[2] C. Rodney, Ewing; Ceram. Int. 17 (1991) 287.
[3] H.T. Hawkins, B.E. Scheetz (Eds.), in: Proceedings of the Material Research Society, Fall Meeting, Boston, MA, 1996.
[4] I.W. Donald, B.L. Metcalfe, R.N.J. Taylor, J. Mater. Sci. 32 (1997) 5851.
[5] S. Pratheep Kumar, G. Buvaneswari, R. Madhavan, G.K.V. Kutty, Radiochemistry 53 (2011) 421.
[6] R. Chourasia, O.P. Shrivastava, R.D. Ambashta, P.K. Wattal, Ann. Nucl. Energy 37 (2010) 103.
[7] A.E. Ringwood, S.E. Kesson, N.G. Ware, W. Hibberson, A. Majar, Nature 278 (1979) 219.
[8] B.C. Sales, L.A. Boatner, Mater. Lett. 2 (1984) 301. [9] M.L. Carter, H. Li, Y. Zhang, E.R. Vance, D.R.G. Mitchell, J. Nucl. Mater. 384 (2009) 322.
[10] B.E. Scheetz, D.K. Agrawal, E. Breval, R. Roy, Waste Manage. 14 (1994) 489.
[11] A.I. Orlova, V.A. Orlova, M.P. Orlova, Radiochemistry 48 (2006) 330.
[12] G. Buvaneswari, K.V. Govindan Kutty, U.V. Varada-Raju, Mater. Res. Bull. 39 (2004) 475.
[13] E. Breval, H.A. McKinstry, D.K. Agrawal, J. Mat. Sci. 35 (2000) 3359.
[14] J. Alamo, R. Roy, J. Mater. Sci. 21 (1986) 444.
[15] V.I. Petkov, E.A. Asabina, Glass Ceram 61 (2004) 233.
[16] M.V. Sukhanova, V.I. Pet’kov, D.V. Firsov, Russ. J. Inorg. Chem. 56 (2011) 1351.
[17] R. Rustam, E.R. Vance, Alamo J. Mater. Res. Bull 17 (1982) 585.
[18] JCPDS Powder Diffraction Data File no. 71-0959 Compiled by International Center for Diffraction Data, USA, 2000.
[19] A.C. Larson, R.B. Von Dreele, LANSCE, MS-H805, Los Almos National Laboratory LAUR (2000) 86.
[20] B.H. Toby, J. Appl. Crystallog. 34 (2001) 210.
[21] H.M. Rietveld, J. Appl. Cryst. 2 (1969) 65.
[22] H. Kojitani, M. Kido, M. Akaogi, Phys. Chem. Miner. 32 (2005) 290.
[23] C. Verissimo, F.M.S. Garrido, O.L. Alves, P. Calle, A.M. Juarez, J.E. Iglesias, J.M. Rojo, Solid State Ionics 100 (1997) 127.
[24] G.E. Lenain, H.A. McKinstry, J. Alamo, D.K. Agrawal, J. Mat. Sci. 22 (1987) 17.
[25] L. Hagman, P. Kierkegaard, Acta Chem. Stand. 22 (1968) 1822.
[26] R.D. Shannon, Acta Crystallogr. A-32 (1976) 751.
[27] J.P. Boilot, G. Collin, P. Colomban, J. Solid State Chem. 73 (1988) 160.
[28] M. Barj, Perthuis, P. Colomban, Solid State Ionics 9 & 10 (1983) 845.
[29] O.P. Shrivastava, R. Chourasia, N. Kumar, Ann. Nucl. Energy 35-36 (2008) 1147.
[30] V.I. Pet’kov, E.A. Asabina, A.V. Markin, N.N. Smirnova, J. Therm. Anal. Calorim. 91 (2008) 155.
[31] E.Y. Borovikova, V.S. Kurazhkovskaya, D.M. Bykov, A.I. Orlova, J. Struct. Chem. 51 (2010) 40.
[32] G. Buvaneswari, U.V. Varadaraju, J. Solid State Chem. 145 (1999) 227.
[33] M. Barj, H. Perthuis, P. Colomban, Solid State Ionics 11 (1983) 157.
[34] A. Mbandza, E. Bordes, P. Courtine, Mater. Res. Bull. 20 (1985) 251.